🎆 Optimizing Relevance Maps of Vision Transformers Improves Robustness
This code allows to finetune the explainability maps of Vision Transformers to enhance robustness.
Github: https://github.com/hila-chefer/robustvit
Colab: https://colab.research.google.com/github/hila-chefer/RobustViT/blob/master/RobustViT.ipynb
Paper: https://arxiv.org/abs/2206.01161
Dataset: https://github.com/UnsupervisedSemanticSegmentation/ImageNet-S
@ai_machinelearning_big_data
This code allows to finetune the explainability maps of Vision Transformers to enhance robustness.
Github: https://github.com/hila-chefer/robustvit
Colab: https://colab.research.google.com/github/hila-chefer/RobustViT/blob/master/RobustViT.ipynb
Paper: https://arxiv.org/abs/2206.01161
Dataset: https://github.com/UnsupervisedSemanticSegmentation/ImageNet-S
@ai_machinelearning_big_data
👍18🔥2
UniSRec
The proposed approach utilizes the associated denoscription text of items to learn transferable representations across different recommendation scenarios.
Github: https://github.com/rucaibox/unisrec
Paper: https://arxiv.org/abs/2206.05941v1
Google Drive: https://drive.google.com/drive/folders/1Uik0fMk4oquV_bS9lXTZuExAYbIDkEMW?usp=sharing
The proposed approach utilizes the associated denoscription text of items to learn transferable representations across different recommendation scenarios.
Github: https://github.com/rucaibox/unisrec
Paper: https://arxiv.org/abs/2206.05941v1
Google Drive: https://drive.google.com/drive/folders/1Uik0fMk4oquV_bS9lXTZuExAYbIDkEMW?usp=sharing
🔥8👍3
🔘 Squeezeformer: An Efficient Transformer for Automatic Speech Recognition
Github: https://github.com/kssteven418/squeezeformer
Paper: https://arxiv.org/abs/2206.00888v1
Dataset: https://paperswithcode.com/dataset/librispeech
@ai_machinelearning_big_data
Github: https://github.com/kssteven418/squeezeformer
Paper: https://arxiv.org/abs/2206.00888v1
Dataset: https://paperswithcode.com/dataset/librispeech
@ai_machinelearning_big_data
👍12❤3
OntoMerger: An Ontology Integration Library for Deduplicating and Connecting Knowledge Graph Nodes
OntoMerger is an ontology alignment library for deduplicating knowledge graph nodes
Github: https://github.com/astrazeneca/onto_merger
Paper: https://arxiv.org/abs/2206.02238v1
Documentation: https://ontomerger.readthedocs.io/
@ai_machinelearning_big_data
OntoMerger is an ontology alignment library for deduplicating knowledge graph nodes
Github: https://github.com/astrazeneca/onto_merger
Paper: https://arxiv.org/abs/2206.02238v1
Documentation: https://ontomerger.readthedocs.io/
@ai_machinelearning_big_data
👍13👎6😱1
👁🗨 CVNets: A library for training computer vision networks
Improved model, MobileViTv2, is state-of-the-art on several mobile vision tasks, including ImageNet object classification and MS-COCO object detection.
Github: https://github.com/apple/ml-cvnets
Examples: https://github.com/apple/ml-cvnets/blob/main/docs/source/en/models
Paper: https://arxiv.org/abs/2206.02680v1
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
Improved model, MobileViTv2, is state-of-the-art on several mobile vision tasks, including ImageNet object classification and MS-COCO object detection.
Github: https://github.com/apple/ml-cvnets
Examples: https://github.com/apple/ml-cvnets/blob/main/docs/source/en/models
Paper: https://arxiv.org/abs/2206.02680v1
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
👍20
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks by Nvidia
Expressive hybrid explicit-implicit network architecture that, together with other design choices, synthesizes not only high-resolution multi-view-consistent images in real time but also produces high-quality 3D geometry.
Github: https://github.com/NVlabs/eg3d
Project: https://nvlabs.github.io/eg3d/
Video: https://www.youtube.com/watch?v=cXxEwI7QbKg&feature=emb_logo&ab_channel=StanfordComputationalImagingLab
Paper: https://nvlabs.github.io/eg3d/media/eg3d.pdf
@ai_machinelearning_big_data
Expressive hybrid explicit-implicit network architecture that, together with other design choices, synthesizes not only high-resolution multi-view-consistent images in real time but also produces high-quality 3D geometry.
Github: https://github.com/NVlabs/eg3d
Project: https://nvlabs.github.io/eg3d/
Video: https://www.youtube.com/watch?v=cXxEwI7QbKg&feature=emb_logo&ab_channel=StanfordComputationalImagingLab
Paper: https://nvlabs.github.io/eg3d/media/eg3d.pdf
@ai_machinelearning_big_data
👍20🔥12❤1😱1
🔦 Featurized Query R-CNN
Featurized object queries predicted by a query generation network in the well-established Faster R-CNN framework and develop a Featurized Query R-CN
Github: https://github.com/hustvl/featurized-queryrcnn
Paper: https://arxiv.org/abs/2206.06258v1
Dataset: https://paperswithcode.com/dataset/crowdhuman
@ai_machinelearning_big_data
Featurized object queries predicted by a query generation network in the well-established Faster R-CNN framework and develop a Featurized Query R-CN
Github: https://github.com/hustvl/featurized-queryrcnn
Paper: https://arxiv.org/abs/2206.06258v1
Dataset: https://paperswithcode.com/dataset/crowdhuman
@ai_machinelearning_big_data
GitHub
GitHub - hustvl/Featurized-QueryRCNN: Featurized Query R-CNN
Featurized Query R-CNN. Contribute to hustvl/Featurized-QueryRCNN development by creating an account on GitHub.
👍10
Can CNNs Be More Robust Than Transformers?
CNN architectures without any attention-like operations that is as robust as, or even more robust than, Transformers.
Github: https://github.com/ucsc-vlaa/robustcnn
Paper: https://arxiv.org/abs/2206.03452v1
Dataset: https://paperswithcode.com/dataset/imagenet-r
@ai_machinelearning_big_data
CNN architectures without any attention-like operations that is as robust as, or even more robust than, Transformers.
Github: https://github.com/ucsc-vlaa/robustcnn
Paper: https://arxiv.org/abs/2206.03452v1
Dataset: https://paperswithcode.com/dataset/imagenet-r
@ai_machinelearning_big_data
👍28🔥1
@itchannels_telegram - data science, machine learning useful channels
👍6
😲 LIVE- Towards Layer-wise Image Vectorization (CVPR 2022 Oral)
New method to progressively generate a SVG that fits the raster image in a layer-wise fashion.
Github: https://github.com/picsart-ai-research/live-layerwise-image-vectorization
Project: https://ma-xu.github.io/LIVE/
Paper: https://arxiv.org/pdf/2206.04655v1.pdf
Colab: https://colab.research.google.com/drive/1s108WmqSVH9MILOjSAu29QyAEjExOWAP?usp=sharing
@ai_machinelearning_big_data
New method to progressively generate a SVG that fits the raster image in a layer-wise fashion.
Github: https://github.com/picsart-ai-research/live-layerwise-image-vectorization
Project: https://ma-xu.github.io/LIVE/
Paper: https://arxiv.org/pdf/2206.04655v1.pdf
Colab: https://colab.research.google.com/drive/1s108WmqSVH9MILOjSAu29QyAEjExOWAP?usp=sharing
@ai_machinelearning_big_data
👍32
🪁 Age prediction of a speaker's voice
https://miykael.github.io/blog/2022/audio_eda_and_modeling/
@ai_machinelearning_big_data
https://miykael.github.io/blog/2022/audio_eda_and_modeling/
@ai_machinelearning_big_data
👍13👎1
🔖 DoWhy | An end-to-end library for causal inference
"DoWhy" is a Python library that aims to spark causal thinking and analysis.
Github: https://github.com/py-why/dowhy
Docs: https://py-why.github.io/dowhy/
Paper: https://arxiv.org/abs/2206.06821v1
Video: https://note.microsoft.com/MSR-Webinar-DoWhy-Library-Registration-On-Demand.html
@ai_machinelearning_big_data
"DoWhy" is a Python library that aims to spark causal thinking and analysis.
Github: https://github.com/py-why/dowhy
Docs: https://py-why.github.io/dowhy/
Paper: https://arxiv.org/abs/2206.06821v1
Video: https://note.microsoft.com/MSR-Webinar-DoWhy-Library-Registration-On-Demand.html
@ai_machinelearning_big_data
👍17❤2
🌩 Object Structural Points Representation for Graph-based Semantic Monocular Localization and Mapping
PyGOD is a Python library for graph outlier detection (anomaly detection).
Github: https://github.com/pygod-team/pygod
Dataset : https://paperswithcode.com/dataset/ogb
Paper: https://arxiv.org/abs/2206.10071v1
PyGOD is a Python library for graph outlier detection (anomaly detection).
Github: https://github.com/pygod-team/pygod
Dataset : https://paperswithcode.com/dataset/ogb
Paper: https://arxiv.org/abs/2206.10071v1
🔥2
🖊 StrengthNet
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"
Github: https://github.com/ttslr/strengthnet
Paper: https://arxiv.org/abs/2110.03156
MOSNet: https://github.com/lochenchou/MOSNet
@ai_machinelearning_big_data
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"
Github: https://github.com/ttslr/strengthnet
Paper: https://arxiv.org/abs/2110.03156
MOSNet: https://github.com/lochenchou/MOSNet
@ai_machinelearning_big_data
👍11❤4🔥2
✔️ Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
This library implements some of the most common (Variational) Autoencoder models.
Github: https://github.com/clementchadebec/benchmark_VAE
Paper: https://arxiv.org/abs/2206.08309v1
Dataset: https://paperswithcode.com/dataset/celeba
@ai_machinelearning_big_data
This library implements some of the most common (Variational) Autoencoder models.
Github: https://github.com/clementchadebec/benchmark_VAE
Paper: https://arxiv.org/abs/2206.08309v1
Dataset: https://paperswithcode.com/dataset/celeba
@ai_machinelearning_big_data
👍15
💻 DaisyRec 2.0: Benchmarking Recommendation for Rigorous Evaluation
DaisyRec-v2.0 is a Python toolkit developed for benchmarking top-N recommendation task.
Github: https://github.com/recsys-benchmark/daisyrec-v2.0
Command Generator : http://daisyrecguicommandgenerator.pythonanywhere.com/
Paper: https://arxiv.org/abs/2206.10848v1
Tutorial: https://github.com/recsys-benchmark/DaisyRec-v2.0/blob/main/DaisyRec-v2.0-Tutorial.ipynb
DaisyRec-v2.0 is a Python toolkit developed for benchmarking top-N recommendation task.
Github: https://github.com/recsys-benchmark/daisyrec-v2.0
Command Generator : http://daisyrecguicommandgenerator.pythonanywhere.com/
Paper: https://arxiv.org/abs/2206.10848v1
Tutorial: https://github.com/recsys-benchmark/DaisyRec-v2.0/blob/main/DaisyRec-v2.0-Tutorial.ipynb
👍11👎4
🔊 SoundSpaces 2.0: A Simulation Platform for Visual-Acoustic Learning
We introduce SoundSpaces 2.0, a platform for on-the-fly geometry-based audio rendering for 3D environments.
Github: https://github.com/facebookresearch/sound-spaces
Paper: https://arxiv.org/abs/2206.08312v1
Dataset: https://paperswithcode.com/dataset/librispeech
@ai_machinelearning_big_data
We introduce SoundSpaces 2.0, a platform for on-the-fly geometry-based audio rendering for 3D environments.
Github: https://github.com/facebookresearch/sound-spaces
Paper: https://arxiv.org/abs/2206.08312v1
Dataset: https://paperswithcode.com/dataset/librispeech
@ai_machinelearning_big_data
👍15🔥4
This media is not supported in your browser
VIEW IN TELEGRAM
📡 NU-Wave — Official PyTorch Implementation
Github: https://github.com/mindslab-ai/nuwave
Paper: https://arxiv.org/abs/2206.08545v1
Dataset: https://datashare.ed.ac.uk/handle/10283/3443
@ai_machinelearning_big_data
Github: https://github.com/mindslab-ai/nuwave
Paper: https://arxiv.org/abs/2206.08545v1
Dataset: https://datashare.ed.ac.uk/handle/10283/3443
@ai_machinelearning_big_data
👍20
Frequency Dynamic Convolution-Recurrent Neural Network (FDY-CRNN) for Sound Event Detection
Frequency Dynamic Convolution applied kernel that adapts to each freqeuncy bin of input, in order to remove tranlation equivariance of 2D convolution along the frequency axis.
Github: https://github.com/frednam93/FDY-SED
Paper: https://arxiv.org/abs/2206.11645v1
Dataset: https://paperswithcode.com/dataset/desed
@ai_machinelearning_big_data
Frequency Dynamic Convolution applied kernel that adapts to each freqeuncy bin of input, in order to remove tranlation equivariance of 2D convolution along the frequency axis.
Github: https://github.com/frednam93/FDY-SED
Paper: https://arxiv.org/abs/2206.11645v1
Dataset: https://paperswithcode.com/dataset/desed
@ai_machinelearning_big_data
👍15👎6❤1
♦️ Color engineering for special images
How to improve color encoding of unnatural images.
Article
Dataset
@ai_machinelearning_big_data
How to improve color encoding of unnatural images.
Article
Dataset
@ai_machinelearning_big_data
👍11