💻 DaisyRec 2.0: Benchmarking Recommendation for Rigorous Evaluation
DaisyRec-v2.0 is a Python toolkit developed for benchmarking top-N recommendation task.
Github: https://github.com/recsys-benchmark/daisyrec-v2.0
Command Generator : http://daisyrecguicommandgenerator.pythonanywhere.com/
Paper: https://arxiv.org/abs/2206.10848v1
Tutorial: https://github.com/recsys-benchmark/DaisyRec-v2.0/blob/main/DaisyRec-v2.0-Tutorial.ipynb
DaisyRec-v2.0 is a Python toolkit developed for benchmarking top-N recommendation task.
Github: https://github.com/recsys-benchmark/daisyrec-v2.0
Command Generator : http://daisyrecguicommandgenerator.pythonanywhere.com/
Paper: https://arxiv.org/abs/2206.10848v1
Tutorial: https://github.com/recsys-benchmark/DaisyRec-v2.0/blob/main/DaisyRec-v2.0-Tutorial.ipynb
👍11👎4
🔊 SoundSpaces 2.0: A Simulation Platform for Visual-Acoustic Learning
We introduce SoundSpaces 2.0, a platform for on-the-fly geometry-based audio rendering for 3D environments.
Github: https://github.com/facebookresearch/sound-spaces
Paper: https://arxiv.org/abs/2206.08312v1
Dataset: https://paperswithcode.com/dataset/librispeech
@ai_machinelearning_big_data
We introduce SoundSpaces 2.0, a platform for on-the-fly geometry-based audio rendering for 3D environments.
Github: https://github.com/facebookresearch/sound-spaces
Paper: https://arxiv.org/abs/2206.08312v1
Dataset: https://paperswithcode.com/dataset/librispeech
@ai_machinelearning_big_data
👍15🔥4
This media is not supported in your browser
VIEW IN TELEGRAM
📡 NU-Wave — Official PyTorch Implementation
Github: https://github.com/mindslab-ai/nuwave
Paper: https://arxiv.org/abs/2206.08545v1
Dataset: https://datashare.ed.ac.uk/handle/10283/3443
@ai_machinelearning_big_data
Github: https://github.com/mindslab-ai/nuwave
Paper: https://arxiv.org/abs/2206.08545v1
Dataset: https://datashare.ed.ac.uk/handle/10283/3443
@ai_machinelearning_big_data
👍20
Frequency Dynamic Convolution-Recurrent Neural Network (FDY-CRNN) for Sound Event Detection
Frequency Dynamic Convolution applied kernel that adapts to each freqeuncy bin of input, in order to remove tranlation equivariance of 2D convolution along the frequency axis.
Github: https://github.com/frednam93/FDY-SED
Paper: https://arxiv.org/abs/2206.11645v1
Dataset: https://paperswithcode.com/dataset/desed
@ai_machinelearning_big_data
Frequency Dynamic Convolution applied kernel that adapts to each freqeuncy bin of input, in order to remove tranlation equivariance of 2D convolution along the frequency axis.
Github: https://github.com/frednam93/FDY-SED
Paper: https://arxiv.org/abs/2206.11645v1
Dataset: https://paperswithcode.com/dataset/desed
@ai_machinelearning_big_data
👍15👎6❤1
♦️ Color engineering for special images
How to improve color encoding of unnatural images.
Article
Dataset
@ai_machinelearning_big_data
How to improve color encoding of unnatural images.
Article
Dataset
@ai_machinelearning_big_data
👍11
🌅 Retrosynthetic Planning with Retro*
graph-based search policy that eliminates the redundant explorations of any intermediate molecules.
Github: https://github.com/binghong-ml/retro_star
Paper: https://arxiv.org/abs/2206.11477v1
Dataset: https://www.dropbox.com/s/ar9cupb18hv96gj/retro_data.zip?dl=0
graph-based search policy that eliminates the redundant explorations of any intermediate molecules.
Github: https://github.com/binghong-ml/retro_star
Paper: https://arxiv.org/abs/2206.11477v1
Dataset: https://www.dropbox.com/s/ar9cupb18hv96gj/retro_data.zip?dl=0
👍10👎2🔥2
🦾 Bi-DexHands: Bimanual Dexterous Manipulation via Reinforcement Learning
Bi-DexHands provides a collection of bimanual dexterous manipulations tasks and reinforcement learning algorithms.
Github: https://github.com/pku-marl/dexteroushands
Isaac Gym: https://developer.nvidia.com/isaac-gym
Paper: https://arxiv.org/abs/2206.08686
@ai_machinelearning_big_data
Bi-DexHands provides a collection of bimanual dexterous manipulations tasks and reinforcement learning algorithms.
Github: https://github.com/pku-marl/dexteroushands
Isaac Gym: https://developer.nvidia.com/isaac-gym
Paper: https://arxiv.org/abs/2206.08686
@ai_machinelearning_big_data
👍14🔥2
SETR - Pytorch
Github: https://github.com/920232796/setr-pytorch
Paper: https://arxiv.org/abs/2206.11520v1
Dataset: https://www.kaggle.com/c/carvana-image-masking-challenge/data
@ai_machinelearning_big_data
Github: https://github.com/920232796/setr-pytorch
Paper: https://arxiv.org/abs/2206.11520v1
Dataset: https://www.kaggle.com/c/carvana-image-masking-challenge/data
@ai_machinelearning_big_data
👍16
📓 MindWare: Efficient Open-source AutoML System.
MindWare is an efficient open-source system to help users to automate the process of: 1) data pre-processing, 2) feature engineering, 3) algorithm selection, 4) architecture design, 5) hyper-parameter tuning, and 6) model ensembling.
Github: https://github.com/PKU-DAIR/mindware
Docs: https://mindware.readthedocs.io/en/latest/
Paper: https://arxiv.org/abs/2206.09423v1
@ai_machinelearning_big_data
MindWare is an efficient open-source system to help users to automate the process of: 1) data pre-processing, 2) feature engineering, 3) algorithm selection, 4) architecture design, 5) hyper-parameter tuning, and 6) model ensembling.
Github: https://github.com/PKU-DAIR/mindware
Docs: https://mindware.readthedocs.io/en/latest/
Paper: https://arxiv.org/abs/2206.09423v1
@ai_machinelearning_big_data
👍15
20 Basic Linux Commands for Data Science Beginners
https://www.kdnuggets.com/2022/06/top-posts-week-0620-0626.html
@ai_machinelearning_big_data
https://www.kdnuggets.com/2022/06/top-posts-week-0620-0626.html
@ai_machinelearning_big_data
KDnuggets
Top Posts June 20-26: 20 Basic Linux Commands for Data Science Beginners
Also: Decision Tree Algorithm, Explained; 15 Python Coding Interview Questions You Must Know For Data Science; Naïve Bayes Algorithm: Everything You Need to Know; KDnuggets Top Posts for May 2022: 9 Free Harvard Courses to Learn Data Science in 2022
😁7👍5
💬 Yandex: An Open-source Yet another Language Model 100B
YaLM 100B is trained for 2 terabyte of text: dataset the Pile and web-pages, including not only Wikipedia, news articles, and books, but also Github and arxiv.org. Yandex has applied the generative neural networks YaLM in the recent Y1 search update. Now they are already helping to give answers to searches in Yandex and Alice.
Github: https://github.com/yandex/YaLM-100B
@ai_machinelearning_big_data
YaLM 100B is trained for 2 terabyte of text: dataset the Pile and web-pages, including not only Wikipedia, news articles, and books, but also Github and arxiv.org. Yandex has applied the generative neural networks YaLM in the recent Y1 search update. Now they are already helping to give answers to searches in Yandex and Alice.
Github: https://github.com/yandex/YaLM-100B
@ai_machinelearning_big_data
🔥24👍4👎4😁1
The Complete Collection of Data Science Cheat Sheets
https://www.kdnuggets.com/2022/02/complete-collection-data-science-cheat-sheets-part-2.html
The Complete Collection of Data Science Cheat Sheets - Part 1.
@ai_machinelearning_big_data
https://www.kdnuggets.com/2022/02/complete-collection-data-science-cheat-sheets-part-2.html
The Complete Collection of Data Science Cheat Sheets - Part 1.
@ai_machinelearning_big_data
❤5👍1
🏮 tntorch - Tensor Network Learning with PyTorch
PyTorch-powered modeling and learning library using tensor networks. Installation: pip install tntorch
Github: https://github.com/rballester/tntorch
Docs site: http://tntorch.readthedocs.io/
Paper: https://arxiv.org/abs/2206.11128v1
@ai_machinelearning_big_data
PyTorch-powered modeling and learning library using tensor networks. Installation: pip install tntorch
Github: https://github.com/rballester/tntorch
Docs site: http://tntorch.readthedocs.io/
Paper: https://arxiv.org/abs/2206.11128v1
@ai_machinelearning_big_data
👍17
Essential Math for Data Science: Eigenvectors and Application to PCA
https://www.kdnuggets.com/2022/06/essential-math-data-science-eigenvectors-application-pca.html
@ai_machinelearning_big_data
https://www.kdnuggets.com/2022/06/essential-math-data-science-eigenvectors-application-pca.html
@ai_machinelearning_big_data
👍6
🦜 Prosody Cloning in Zero-Shot Multispeaker Text-to-Speech
IMS Toucan is a toolkit for teaching, training and using state-of-the-art Speech Synthesis models.
Github: https://github.com/rballester/tntorch
Pre-Generated Audios: https://multilingualtoucan.github.io/
Cloning prosody across speakers: https://toucanprosodycloningdemo.github.io/
Paper: https://arxiv.org/abs/2206.12229v1
@ai_machinelearning_big_data
IMS Toucan is a toolkit for teaching, training and using state-of-the-art Speech Synthesis models.
Github: https://github.com/rballester/tntorch
Pre-Generated Audios: https://multilingualtoucan.github.io/
Cloning prosody across speakers: https://toucanprosodycloningdemo.github.io/
Paper: https://arxiv.org/abs/2206.12229v1
@ai_machinelearning_big_data
👍10
⚡️ K-CAI NEURAL API
KCAI NEURAL API Keras based neural network API that will allow you to prototype
Github: https://github.com/joaopauloschuler/k-neural-api
Colab: https://colab.research.google.com/github/joaopauloschuler/k-neural-api/blob/master/examples/jupyter/simple_image_classification_with_any_dataset.ipynb
Paper: https://www.researchgate.net/publication/360226228_Grouped_Pointwise_Convolutions_Reduce_Parameters_in_Convolutional_Neural_Networks
Dataset: https://paperswithcode.com/dataset/plantdoc
KCAI NEURAL API Keras based neural network API that will allow you to prototype
Github: https://github.com/joaopauloschuler/k-neural-api
Colab: https://colab.research.google.com/github/joaopauloschuler/k-neural-api/blob/master/examples/jupyter/simple_image_classification_with_any_dataset.ipynb
Paper: https://www.researchgate.net/publication/360226228_Grouped_Pointwise_Convolutions_Reduce_Parameters_in_Convolutional_Neural_Networks
Dataset: https://paperswithcode.com/dataset/plantdoc
👍12👎1
🗾 Insubstantial Object Detection
Dataset comprised of 600 videos (141,017 frames) covering various distances, sizes, visibility, and scenes captured by different spectral ranges.
Github: https://github.com/calayzhou/iod-video
Project: https://calayzhou.github.io/
Paper: https://arxiv.org/abs/2206.11459v1
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
Dataset comprised of 600 videos (141,017 frames) covering various distances, sizes, visibility, and scenes captured by different spectral ranges.
Github: https://github.com/calayzhou/iod-video
Project: https://calayzhou.github.io/
Paper: https://arxiv.org/abs/2206.11459v1
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
👍15🔥1
📲 Forecasting Future World Events with Neural Networks
Github: https://github.com/andyzoujm/autocast
Paper: https://arxiv.org/abs/2206.15474v1
Dataset: https://people.eecs.berkeley.edu/~hendrycks/intervalqa.tar.gz
Github: https://github.com/andyzoujm/autocast
Paper: https://arxiv.org/abs/2206.15474v1
Dataset: https://people.eecs.berkeley.edu/~hendrycks/intervalqa.tar.gz
👍7👎5
📝 Pen and paper exercises in machine learning
Exercises in Machine Learning
Github: https://github.com/michaelgutmann/ml-pen-and-paper-exercises
Paper: https://arxiv.org/abs/2206.13446v1
📓 Bayesian Reasoning and Machine Learning Free Book
@ai_machinelearning_big_data
Exercises in Machine Learning
Github: https://github.com/michaelgutmann/ml-pen-and-paper-exercises
Paper: https://arxiv.org/abs/2206.13446v1
📓 Bayesian Reasoning and Machine Learning Free Book
@ai_machinelearning_big_data
👍33🔥5😱1
How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras
https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/
@ai_machinelearning_big_data
https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/
@ai_machinelearning_big_data
👍12👎6
🎯 A Comprehensive Survey on Deep Gait Recognition: Algorithms, Datasets and Challenges
Github: https://github.com/shiqiyu/opengait
Paper: https://arxiv.org/abs/2206.13732v1
Dataset: https://paperswithcode.com/dataset/usf
@ai_machinelearning_big_data
Github: https://github.com/shiqiyu/opengait
Paper: https://arxiv.org/abs/2206.13732v1
Dataset: https://paperswithcode.com/dataset/usf
@ai_machinelearning_big_data
👍14