This media is not supported in your browser
VIEW IN TELEGRAM
🔥 EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks by Nvidia
Expressive hybrid explicit-implicit network architecture that, together with other design choices, synthesizes not only high-resolution multi-view-consistent images in real time but also produces high-quality 3D geometry.
Github: https://github.com/NVlabs/eg3d
Project: https://nvlabs.github.io/eg3d/
Video: https://www.youtube.com/watch?v=cXxEwI7QbKg&feature=emb_logo&ab_channel=StanfordComputationalImagingLab
Paper: https://nvlabs.github.io/eg3d/media/eg3d.pdf
@ai_machinelearning_big_data
Expressive hybrid explicit-implicit network architecture that, together with other design choices, synthesizes not only high-resolution multi-view-consistent images in real time but also produces high-quality 3D geometry.
Github: https://github.com/NVlabs/eg3d
Project: https://nvlabs.github.io/eg3d/
Video: https://www.youtube.com/watch?v=cXxEwI7QbKg&feature=emb_logo&ab_channel=StanfordComputationalImagingLab
Paper: https://nvlabs.github.io/eg3d/media/eg3d.pdf
@ai_machinelearning_big_data
👍20🔥12❤1😱1
🔦 Featurized Query R-CNN
Featurized object queries predicted by a query generation network in the well-established Faster R-CNN framework and develop a Featurized Query R-CN
Github: https://github.com/hustvl/featurized-queryrcnn
Paper: https://arxiv.org/abs/2206.06258v1
Dataset: https://paperswithcode.com/dataset/crowdhuman
@ai_machinelearning_big_data
Featurized object queries predicted by a query generation network in the well-established Faster R-CNN framework and develop a Featurized Query R-CN
Github: https://github.com/hustvl/featurized-queryrcnn
Paper: https://arxiv.org/abs/2206.06258v1
Dataset: https://paperswithcode.com/dataset/crowdhuman
@ai_machinelearning_big_data
GitHub
GitHub - hustvl/Featurized-QueryRCNN: Featurized Query R-CNN
Featurized Query R-CNN. Contribute to hustvl/Featurized-QueryRCNN development by creating an account on GitHub.
👍10
Can CNNs Be More Robust Than Transformers?
CNN architectures without any attention-like operations that is as robust as, or even more robust than, Transformers.
Github: https://github.com/ucsc-vlaa/robustcnn
Paper: https://arxiv.org/abs/2206.03452v1
Dataset: https://paperswithcode.com/dataset/imagenet-r
@ai_machinelearning_big_data
CNN architectures without any attention-like operations that is as robust as, or even more robust than, Transformers.
Github: https://github.com/ucsc-vlaa/robustcnn
Paper: https://arxiv.org/abs/2206.03452v1
Dataset: https://paperswithcode.com/dataset/imagenet-r
@ai_machinelearning_big_data
👍28🔥1
@itchannels_telegram - data science, machine learning useful channels
👍6
😲 LIVE- Towards Layer-wise Image Vectorization (CVPR 2022 Oral)
New method to progressively generate a SVG that fits the raster image in a layer-wise fashion.
Github: https://github.com/picsart-ai-research/live-layerwise-image-vectorization
Project: https://ma-xu.github.io/LIVE/
Paper: https://arxiv.org/pdf/2206.04655v1.pdf
Colab: https://colab.research.google.com/drive/1s108WmqSVH9MILOjSAu29QyAEjExOWAP?usp=sharing
@ai_machinelearning_big_data
New method to progressively generate a SVG that fits the raster image in a layer-wise fashion.
Github: https://github.com/picsart-ai-research/live-layerwise-image-vectorization
Project: https://ma-xu.github.io/LIVE/
Paper: https://arxiv.org/pdf/2206.04655v1.pdf
Colab: https://colab.research.google.com/drive/1s108WmqSVH9MILOjSAu29QyAEjExOWAP?usp=sharing
@ai_machinelearning_big_data
👍32
🪁 Age prediction of a speaker's voice
https://miykael.github.io/blog/2022/audio_eda_and_modeling/
@ai_machinelearning_big_data
https://miykael.github.io/blog/2022/audio_eda_and_modeling/
@ai_machinelearning_big_data
👍13👎1
🔖 DoWhy | An end-to-end library for causal inference
"DoWhy" is a Python library that aims to spark causal thinking and analysis.
Github: https://github.com/py-why/dowhy
Docs: https://py-why.github.io/dowhy/
Paper: https://arxiv.org/abs/2206.06821v1
Video: https://note.microsoft.com/MSR-Webinar-DoWhy-Library-Registration-On-Demand.html
@ai_machinelearning_big_data
"DoWhy" is a Python library that aims to spark causal thinking and analysis.
Github: https://github.com/py-why/dowhy
Docs: https://py-why.github.io/dowhy/
Paper: https://arxiv.org/abs/2206.06821v1
Video: https://note.microsoft.com/MSR-Webinar-DoWhy-Library-Registration-On-Demand.html
@ai_machinelearning_big_data
👍17❤2
🌩 Object Structural Points Representation for Graph-based Semantic Monocular Localization and Mapping
PyGOD is a Python library for graph outlier detection (anomaly detection).
Github: https://github.com/pygod-team/pygod
Dataset : https://paperswithcode.com/dataset/ogb
Paper: https://arxiv.org/abs/2206.10071v1
PyGOD is a Python library for graph outlier detection (anomaly detection).
Github: https://github.com/pygod-team/pygod
Dataset : https://paperswithcode.com/dataset/ogb
Paper: https://arxiv.org/abs/2206.10071v1
🔥2
🖊 StrengthNet
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"
Github: https://github.com/ttslr/strengthnet
Paper: https://arxiv.org/abs/2110.03156
MOSNet: https://github.com/lochenchou/MOSNet
@ai_machinelearning_big_data
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"
Github: https://github.com/ttslr/strengthnet
Paper: https://arxiv.org/abs/2110.03156
MOSNet: https://github.com/lochenchou/MOSNet
@ai_machinelearning_big_data
👍11❤4🔥2
✔️ Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
This library implements some of the most common (Variational) Autoencoder models.
Github: https://github.com/clementchadebec/benchmark_VAE
Paper: https://arxiv.org/abs/2206.08309v1
Dataset: https://paperswithcode.com/dataset/celeba
@ai_machinelearning_big_data
This library implements some of the most common (Variational) Autoencoder models.
Github: https://github.com/clementchadebec/benchmark_VAE
Paper: https://arxiv.org/abs/2206.08309v1
Dataset: https://paperswithcode.com/dataset/celeba
@ai_machinelearning_big_data
👍15
💻 DaisyRec 2.0: Benchmarking Recommendation for Rigorous Evaluation
DaisyRec-v2.0 is a Python toolkit developed for benchmarking top-N recommendation task.
Github: https://github.com/recsys-benchmark/daisyrec-v2.0
Command Generator : http://daisyrecguicommandgenerator.pythonanywhere.com/
Paper: https://arxiv.org/abs/2206.10848v1
Tutorial: https://github.com/recsys-benchmark/DaisyRec-v2.0/blob/main/DaisyRec-v2.0-Tutorial.ipynb
DaisyRec-v2.0 is a Python toolkit developed for benchmarking top-N recommendation task.
Github: https://github.com/recsys-benchmark/daisyrec-v2.0
Command Generator : http://daisyrecguicommandgenerator.pythonanywhere.com/
Paper: https://arxiv.org/abs/2206.10848v1
Tutorial: https://github.com/recsys-benchmark/DaisyRec-v2.0/blob/main/DaisyRec-v2.0-Tutorial.ipynb
👍11👎4
🔊 SoundSpaces 2.0: A Simulation Platform for Visual-Acoustic Learning
We introduce SoundSpaces 2.0, a platform for on-the-fly geometry-based audio rendering for 3D environments.
Github: https://github.com/facebookresearch/sound-spaces
Paper: https://arxiv.org/abs/2206.08312v1
Dataset: https://paperswithcode.com/dataset/librispeech
@ai_machinelearning_big_data
We introduce SoundSpaces 2.0, a platform for on-the-fly geometry-based audio rendering for 3D environments.
Github: https://github.com/facebookresearch/sound-spaces
Paper: https://arxiv.org/abs/2206.08312v1
Dataset: https://paperswithcode.com/dataset/librispeech
@ai_machinelearning_big_data
👍15🔥4
This media is not supported in your browser
VIEW IN TELEGRAM
📡 NU-Wave — Official PyTorch Implementation
Github: https://github.com/mindslab-ai/nuwave
Paper: https://arxiv.org/abs/2206.08545v1
Dataset: https://datashare.ed.ac.uk/handle/10283/3443
@ai_machinelearning_big_data
Github: https://github.com/mindslab-ai/nuwave
Paper: https://arxiv.org/abs/2206.08545v1
Dataset: https://datashare.ed.ac.uk/handle/10283/3443
@ai_machinelearning_big_data
👍20
Frequency Dynamic Convolution-Recurrent Neural Network (FDY-CRNN) for Sound Event Detection
Frequency Dynamic Convolution applied kernel that adapts to each freqeuncy bin of input, in order to remove tranlation equivariance of 2D convolution along the frequency axis.
Github: https://github.com/frednam93/FDY-SED
Paper: https://arxiv.org/abs/2206.11645v1
Dataset: https://paperswithcode.com/dataset/desed
@ai_machinelearning_big_data
Frequency Dynamic Convolution applied kernel that adapts to each freqeuncy bin of input, in order to remove tranlation equivariance of 2D convolution along the frequency axis.
Github: https://github.com/frednam93/FDY-SED
Paper: https://arxiv.org/abs/2206.11645v1
Dataset: https://paperswithcode.com/dataset/desed
@ai_machinelearning_big_data
👍15👎6❤1
♦️ Color engineering for special images
How to improve color encoding of unnatural images.
Article
Dataset
@ai_machinelearning_big_data
How to improve color encoding of unnatural images.
Article
Dataset
@ai_machinelearning_big_data
👍11
🌅 Retrosynthetic Planning with Retro*
graph-based search policy that eliminates the redundant explorations of any intermediate molecules.
Github: https://github.com/binghong-ml/retro_star
Paper: https://arxiv.org/abs/2206.11477v1
Dataset: https://www.dropbox.com/s/ar9cupb18hv96gj/retro_data.zip?dl=0
graph-based search policy that eliminates the redundant explorations of any intermediate molecules.
Github: https://github.com/binghong-ml/retro_star
Paper: https://arxiv.org/abs/2206.11477v1
Dataset: https://www.dropbox.com/s/ar9cupb18hv96gj/retro_data.zip?dl=0
👍10👎2🔥2
🦾 Bi-DexHands: Bimanual Dexterous Manipulation via Reinforcement Learning
Bi-DexHands provides a collection of bimanual dexterous manipulations tasks and reinforcement learning algorithms.
Github: https://github.com/pku-marl/dexteroushands
Isaac Gym: https://developer.nvidia.com/isaac-gym
Paper: https://arxiv.org/abs/2206.08686
@ai_machinelearning_big_data
Bi-DexHands provides a collection of bimanual dexterous manipulations tasks and reinforcement learning algorithms.
Github: https://github.com/pku-marl/dexteroushands
Isaac Gym: https://developer.nvidia.com/isaac-gym
Paper: https://arxiv.org/abs/2206.08686
@ai_machinelearning_big_data
👍14🔥2
SETR - Pytorch
Github: https://github.com/920232796/setr-pytorch
Paper: https://arxiv.org/abs/2206.11520v1
Dataset: https://www.kaggle.com/c/carvana-image-masking-challenge/data
@ai_machinelearning_big_data
Github: https://github.com/920232796/setr-pytorch
Paper: https://arxiv.org/abs/2206.11520v1
Dataset: https://www.kaggle.com/c/carvana-image-masking-challenge/data
@ai_machinelearning_big_data
👍16
📓 MindWare: Efficient Open-source AutoML System.
MindWare is an efficient open-source system to help users to automate the process of: 1) data pre-processing, 2) feature engineering, 3) algorithm selection, 4) architecture design, 5) hyper-parameter tuning, and 6) model ensembling.
Github: https://github.com/PKU-DAIR/mindware
Docs: https://mindware.readthedocs.io/en/latest/
Paper: https://arxiv.org/abs/2206.09423v1
@ai_machinelearning_big_data
MindWare is an efficient open-source system to help users to automate the process of: 1) data pre-processing, 2) feature engineering, 3) algorithm selection, 4) architecture design, 5) hyper-parameter tuning, and 6) model ensembling.
Github: https://github.com/PKU-DAIR/mindware
Docs: https://mindware.readthedocs.io/en/latest/
Paper: https://arxiv.org/abs/2206.09423v1
@ai_machinelearning_big_data
👍15
20 Basic Linux Commands for Data Science Beginners
https://www.kdnuggets.com/2022/06/top-posts-week-0620-0626.html
@ai_machinelearning_big_data
https://www.kdnuggets.com/2022/06/top-posts-week-0620-0626.html
@ai_machinelearning_big_data
KDnuggets
Top Posts June 20-26: 20 Basic Linux Commands for Data Science Beginners
Also: Decision Tree Algorithm, Explained; 15 Python Coding Interview Questions You Must Know For Data Science; Naïve Bayes Algorithm: Everything You Need to Know; KDnuggets Top Posts for May 2022: 9 Free Harvard Courses to Learn Data Science in 2022
😁7👍5
💬 Yandex: An Open-source Yet another Language Model 100B
YaLM 100B is trained for 2 terabyte of text: dataset the Pile and web-pages, including not only Wikipedia, news articles, and books, but also Github and arxiv.org. Yandex has applied the generative neural networks YaLM in the recent Y1 search update. Now they are already helping to give answers to searches in Yandex and Alice.
Github: https://github.com/yandex/YaLM-100B
@ai_machinelearning_big_data
YaLM 100B is trained for 2 terabyte of text: dataset the Pile and web-pages, including not only Wikipedia, news articles, and books, but also Github and arxiv.org. Yandex has applied the generative neural networks YaLM in the recent Y1 search update. Now they are already helping to give answers to searches in Yandex and Alice.
Github: https://github.com/yandex/YaLM-100B
@ai_machinelearning_big_data
🔥24👍4👎4😁1