⚡️ K-CAI NEURAL API
KCAI NEURAL API Keras based neural network API that will allow you to prototype
Github: https://github.com/joaopauloschuler/k-neural-api
Colab: https://colab.research.google.com/github/joaopauloschuler/k-neural-api/blob/master/examples/jupyter/simple_image_classification_with_any_dataset.ipynb
Paper: https://www.researchgate.net/publication/360226228_Grouped_Pointwise_Convolutions_Reduce_Parameters_in_Convolutional_Neural_Networks
Dataset: https://paperswithcode.com/dataset/plantdoc
KCAI NEURAL API Keras based neural network API that will allow you to prototype
Github: https://github.com/joaopauloschuler/k-neural-api
Colab: https://colab.research.google.com/github/joaopauloschuler/k-neural-api/blob/master/examples/jupyter/simple_image_classification_with_any_dataset.ipynb
Paper: https://www.researchgate.net/publication/360226228_Grouped_Pointwise_Convolutions_Reduce_Parameters_in_Convolutional_Neural_Networks
Dataset: https://paperswithcode.com/dataset/plantdoc
👍12👎1
🗾 Insubstantial Object Detection
Dataset comprised of 600 videos (141,017 frames) covering various distances, sizes, visibility, and scenes captured by different spectral ranges.
Github: https://github.com/calayzhou/iod-video
Project: https://calayzhou.github.io/
Paper: https://arxiv.org/abs/2206.11459v1
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
Dataset comprised of 600 videos (141,017 frames) covering various distances, sizes, visibility, and scenes captured by different spectral ranges.
Github: https://github.com/calayzhou/iod-video
Project: https://calayzhou.github.io/
Paper: https://arxiv.org/abs/2206.11459v1
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
👍15🔥1
📲 Forecasting Future World Events with Neural Networks
Github: https://github.com/andyzoujm/autocast
Paper: https://arxiv.org/abs/2206.15474v1
Dataset: https://people.eecs.berkeley.edu/~hendrycks/intervalqa.tar.gz
Github: https://github.com/andyzoujm/autocast
Paper: https://arxiv.org/abs/2206.15474v1
Dataset: https://people.eecs.berkeley.edu/~hendrycks/intervalqa.tar.gz
👍7👎5
📝 Pen and paper exercises in machine learning
Exercises in Machine Learning
Github: https://github.com/michaelgutmann/ml-pen-and-paper-exercises
Paper: https://arxiv.org/abs/2206.13446v1
📓 Bayesian Reasoning and Machine Learning Free Book
@ai_machinelearning_big_data
Exercises in Machine Learning
Github: https://github.com/michaelgutmann/ml-pen-and-paper-exercises
Paper: https://arxiv.org/abs/2206.13446v1
📓 Bayesian Reasoning and Machine Learning Free Book
@ai_machinelearning_big_data
👍33🔥5😱1
How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras
https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/
@ai_machinelearning_big_data
https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/
@ai_machinelearning_big_data
👍12👎6
🎯 A Comprehensive Survey on Deep Gait Recognition: Algorithms, Datasets and Challenges
Github: https://github.com/shiqiyu/opengait
Paper: https://arxiv.org/abs/2206.13732v1
Dataset: https://paperswithcode.com/dataset/usf
@ai_machinelearning_big_data
Github: https://github.com/shiqiyu/opengait
Paper: https://arxiv.org/abs/2206.13732v1
Dataset: https://paperswithcode.com/dataset/usf
@ai_machinelearning_big_data
👍14
🧠 Identifying and Combating Bias in Segmentation Networks by leveraging multiple resolutions
Github: https://github.com/Deep-MI/FastSurfer
Colab: https://colab.research.google.com/github/Deep-MI/FastSurfer/blob/master/Tutorial/Tutorial_FastSurferCNN_QuickSeg.ipynb
Paper: https://arxiv.org/abs/2206.14919v1
@ai_machinelearning_big_data
Github: https://github.com/Deep-MI/FastSurfer
Colab: https://colab.research.google.com/github/Deep-MI/FastSurfer/blob/master/Tutorial/Tutorial_FastSurferCNN_QuickSeg.ipynb
Paper: https://arxiv.org/abs/2206.14919v1
@ai_machinelearning_big_data
👍21
FAST-VQA: Efficient End-to-end Video Quality Assessment with Fragment Sampling
Github: https://github.com/timothyhtimothy/fast-vqa
Paper: https://arxiv.org/abs/2207.02595v1
Dataset: https://paperswithcode.com/dataset/kinetics
Github: https://github.com/timothyhtimothy/fast-vqa
Paper: https://arxiv.org/abs/2207.02595v1
Dataset: https://paperswithcode.com/dataset/kinetics
👍14👎2
🔌 Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level Physically-Grounded Augmentations
For the first time brings the power of robust data augmentations into regularizing the NeRF training.
Github: https://github.com/vita-group/aug-nerf
Paper: https://arxiv.org/abs/2207.01164v1
Cloud Drive: https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1
@ai_machinelearning_big_data
For the first time brings the power of robust data augmentations into regularizing the NeRF training.
Github: https://github.com/vita-group/aug-nerf
Paper: https://arxiv.org/abs/2207.01164v1
Cloud Drive: https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1
@ai_machinelearning_big_data
👍13😱1
Bounding Box Deep Learning: The Future of Video Annotation
https://www.kdnuggets.com/2022/07/bounding-box-deep-learning-future-video-annotation.html
@ai_machinelearning_big_data
https://www.kdnuggets.com/2022/07/bounding-box-deep-learning-future-video-annotation.html
@ai_machinelearning_big_data
👍9👎4😱1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 SeqDeepFake: Detecting and Recovering Sequential DeepFake Manipulation
First Seq-DeepFake dataset, where face images are manipulated sequentially with corresponding annotations of sequential facial manipulation vectors.
Github: https://github.com/rshaojimmy/seqdeepfake
Project: https://rshaojimmy.github.io/Projects/SeqDeepFake
Paper: https://arxiv.org/pdf/2207.02204.pdf
Dataset: https://paperswithcode.com/dataset/imagenet
@ai_machinelearning_big_data
First Seq-DeepFake dataset, where face images are manipulated sequentially with corresponding annotations of sequential facial manipulation vectors.
Github: https://github.com/rshaojimmy/seqdeepfake
Project: https://rshaojimmy.github.io/Projects/SeqDeepFake
Paper: https://arxiv.org/pdf/2207.02204.pdf
Dataset: https://paperswithcode.com/dataset/imagenet
@ai_machinelearning_big_data
🔥10👍4🥰1
Understanding the Design of a Convolutional Neural Network
https://machinelearningmastery.com/understanding-the-design-of-a-convolutional-neural-network/
@ai_machinelearning_big_data
https://machinelearningmastery.com/understanding-the-design-of-a-convolutional-neural-network/
@ai_machinelearning_big_data
👍11
🔀 No Language Left Behind
Meta's open-sources models capable of delivering high-quality translations directly between any pair of 200+ languages.
Github: https://github.com/facebookresearch/fairseq/tree/nllb
Paper: https://research.facebook.com/publications/no-language-left-behind/
Website: https://ai.facebook.com/research/no-language-left-behind/
Demo: https://nllb.metademolab.com/
@ai_machinelearning_big_data
Meta's open-sources models capable of delivering high-quality translations directly between any pair of 200+ languages.
Github: https://github.com/facebookresearch/fairseq/tree/nllb
Paper: https://research.facebook.com/publications/no-language-left-behind/
Website: https://ai.facebook.com/research/no-language-left-behind/
Demo: https://nllb.metademolab.com/
@ai_machinelearning_big_data
👍10
⬆️ YOLOv7
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
Github: https://github.com/wongkinyiu/yolov7
Paper: https://arxiv.org/abs/2207.02696v1
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
Github: https://github.com/wongkinyiu/yolov7
Paper: https://arxiv.org/abs/2207.02696v1
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
👍15❤7🎉3
👀 Object Centric Open Vocabulary Detection
Object-centric alignment of the language embeddings from the CLIP model.
Github: https://github.com/hanoonaR/object-centric-ovd
Paper: https://arxiv.org/abs/2207.03482v1
Dataset: https://paperswithcode.com/dataset/imagenet
@ai_machinelearning_big_data
Object-centric alignment of the language embeddings from the CLIP model.
Github: https://github.com/hanoonaR/object-centric-ovd
Paper: https://arxiv.org/abs/2207.03482v1
Dataset: https://paperswithcode.com/dataset/imagenet
@ai_machinelearning_big_data
👍14🔥2
The 5 Best Places To Host Your Data Science Portfolio
https://www.kdnuggets.com/2022/07/5-best-places-host-data-science-portfolio.html
@ai_machinelearning_big_data
https://www.kdnuggets.com/2022/07/5-best-places-host-data-science-portfolio.html
@ai_machinelearning_big_data
👍19🔥5👎1
🔸 An Efficiency Study for SPLADE Models
SParse Lexical AnD Expansion Model for First Stage Ranking.
Github: https://github.com/naver/splade
Paper: https://arxiv.org/abs/2207.03834v1
Dataset: https://paperswithcode.com/dataset/ms-marco
@ai_machinelearning_big_data
SParse Lexical AnD Expansion Model for First Stage Ranking.
Github: https://github.com/naver/splade
Paper: https://arxiv.org/abs/2207.03834v1
Dataset: https://paperswithcode.com/dataset/ms-marco
@ai_machinelearning_big_data
👍12
Masked Autoencoders that Listen
Github: https://github.com/facebookresearch/audiomae
Paper: https://arxiv.org/abs/2207.06405v1
Dataset : https://paperswithcode.com/dataset/audioset
@ai_machinelearning_big_data
Github: https://github.com/facebookresearch/audiomae
Paper: https://arxiv.org/abs/2207.06405v1
Dataset : https://paperswithcode.com/dataset/audioset
@ai_machinelearning_big_data
GitHub
GitHub - facebookresearch/AudioMAE: This repo hosts the code and models of "Masked Autoencoders that Listen".
This repo hosts the code and models of "Masked Autoencoders that Listen". - facebookresearch/AudioMAE
👍7👎4
🧍♂ PeopleSansPeople: A Synthetic Data Generator for Human-Centric Computer Vision
Human-centric privacy-preserving synthetic data generator with highly parametrized domain randomization.
Github: https://github.com/unity-technologies/peoplesanspeople
Paper: https://arxiv.org/abs/2207.05025v1
Demo Video: https://www.youtube.com/watch?v=mQ_DUdB70dc
@ai_machinelearning_big_data
Human-centric privacy-preserving synthetic data generator with highly parametrized domain randomization.
Github: https://github.com/unity-technologies/peoplesanspeople
Paper: https://arxiv.org/abs/2207.05025v1
Demo Video: https://www.youtube.com/watch?v=mQ_DUdB70dc
@ai_machinelearning_big_data
👍13
The AIoT Revolution: How AI and IoT Are Transforming Our World
https://www.kdnuggets.com/2022/07/aiot-revolution-ai-iot-transforming-world.html
@ai_machinelearning_big_data
https://www.kdnuggets.com/2022/07/aiot-revolution-ai-iot-transforming-world.html
@ai_machinelearning_big_data