Machinelearning – Telegram
383K subscribers
4.46K photos
861 videos
17 files
4.9K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
FAST-VQA: Efficient End-to-end Video Quality Assessment with Fragment Sampling

Github: https://github.com/timothyhtimothy/fast-vqa

Paper: https://arxiv.org/abs/2207.02595v1

Dataset: https://paperswithcode.com/dataset/kinetics
👍14👎2
🔌 Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level Physically-Grounded Augmentations

For the first time brings the power of robust data augmentations into regularizing the NeRF training.

Github: https://github.com/vita-group/aug-nerf

Paper: https://arxiv.org/abs/2207.01164v1

Cloud Drive: https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1

@ai_machinelearning_big_data
👍13😱1
👍9👎4😱1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 SeqDeepFake: Detecting and Recovering Sequential DeepFake Manipulation

First Seq-DeepFake dataset, where face images are manipulated sequentially with corresponding annotations of sequential facial manipulation vectors.

Github: https://github.com/rshaojimmy/seqdeepfake

Project: https://rshaojimmy.github.io/Projects/SeqDeepFake

Paper: https://arxiv.org/pdf/2207.02204.pdf

Dataset: https://paperswithcode.com/dataset/imagenet

@ai_machinelearning_big_data
🔥10👍4🥰1
🔀 No Language Left Behind

Meta's open-sources models capable of delivering high-quality translations directly between any pair of 200+ languages.

Github: https://github.com/facebookresearch/fairseq/tree/nllb

Paper: https://research.facebook.com/publications/no-language-left-behind/

Website: https://ai.facebook.com/research/no-language-left-behind/

Demo: https://nllb.metademolab.com/

@ai_machinelearning_big_data
👍10
👍8👎3
⬆️ YOLOv7

YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

Github: https://github.com/wongkinyiu/yolov7

Paper: https://arxiv.org/abs/2207.02696v1

Dataset: https://paperswithcode.com/dataset/coco

@ai_machinelearning_big_data
👍157🎉3
👀 Object Centric Open Vocabulary Detection

Object-centric alignment of the language embeddings from the CLIP model.

Github: https://github.com/hanoonaR/object-centric-ovd

Paper: https://arxiv.org/abs/2207.03482v1

Dataset: https://paperswithcode.com/dataset/imagenet

@ai_machinelearning_big_data
👍14🔥2
👍19🔥5👎1
🔸 An Efficiency Study for SPLADE Models

SParse Lexical AnD Expansion Model for First Stage Ranking.

Github: https://github.com/naver/splade

Paper: https://arxiv.org/abs/2207.03834v1

Dataset: https://paperswithcode.com/dataset/ms-marco

@ai_machinelearning_big_data
👍12
🧍‍♂ PeopleSansPeople: A Synthetic Data Generator for Human-Centric Computer Vision

Human-centric privacy-preserving synthetic data generator with highly parametrized domain randomization.

Github: https://github.com/unity-technologies/peoplesanspeople

Paper: https://arxiv.org/abs/2207.05025v1

Demo Video: https://www.youtube.com/watch?v=mQ_DUdB70dc

@ai_machinelearning_big_data
👍13
🚀 Dynamic Low-Resolution Distillation for Cost-Efficient End-to-End Text Spotting

Github: https://github.com/hikopensource/davar-lab-ocr

Paper: https://arxiv.org/abs/2207.06694v1

Dataset: https://paperswithcode.com/dataset/total-text

@ai_machinelearning_big_data
👍84