Machinelearning – Telegram
383K subscribers
4.45K photos
858 videos
17 files
4.89K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
⭐️ SplineCam: Exact Visualization and Characterization of Deep Network Geometry and Decision Boundaries, CVPR 2023

Exact method for computing partitions of a Deep Neural Network

🖥 Github: http://github.com/AhmedImtiazPrio/SplineCAM

🖥 Colab: https://bit.ly/splinecam-demo

Paper: http://arxiv.org/pdf/2302.12828.pdf

⭐️ Project: http://imtiazhumayun.github.io/splinecam

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20😱32🔥2
Ultra fast ControlNet with 🧨 Diffusers

ControlNet provides a minimal interface allowing users to customize the generation process up to a great extent.

Новый пайплайн StableDiffusionControlNetPipeline, в статье показано, как его можно применять для различных задач. Давайте контролировать!

🤗 Hugging face blog: https://huggingface.co/blog/controlnet

🖥 Colab: https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/controlnet.ipynb

🖥 Github: https://github.com/lllyasviel/ControlNet

Paprer: https://arxiv.org/abs/2302.05543

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍25🔥63🤯2
This media is not supported in your browser
VIEW IN TELEGRAM
🧩 Building LEGO for 3D Reconstruction on Mobile Devices

A novel data capturing and 3D annotation pipeline in MobileBrick without relying on expensive 3D scanners.

MobileBrick - это первый многоракурсный набор данных RGBD, снятый на мобильное устройство, с точными 3D-аннотациями для детальной реконструкции 3D-объектов.


🖥 Github: https://github.com/ActiveVisionLab/MobileBrick

Paper: https://arxiv.org/abs/2303.01932

⭐️ Dataset: http://www.robots.ox.ac.uk/~victor/data/MobileBrick/MobileBrick_Mar23.zip

💨 Project: https://code.active.vision/MobileBrick/

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11🔥31
Openicl

New open-source toolkit for ICL and LLM evaluation.

OpenICL - новый фреймворк для исследования, разработки и созданию прототипов для задач in-context learning.

pip install openicl

🖥 Github: https://github.com/shark-nlp/openicl

Paper: https://arxiv.org/abs/2303.02913

⭐️ Dataset: https://paperswithcode.com/dataset/gsm8k

💨 Docs: https://github.com/shark-nlp/openicl#docs

Examples: https://github.com/Shark-NLP/OpenICL/tree/main/examples

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14🔥21
🖥 MIT Introduction to Deep Learning 2023

Lecture 1 *New 2023 Edition* Foundations of Deep Learning

Премьера новых лекции курса Introduction to Deep Learning от MiT


🎞 Video: https://www.youtube.com/watch?v=N4AcIfaROEQ
📝 Lectures: http://introtodeeplearning.com/

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍27🔥1121😢1
Multivariate Probabilistic Time Series Forecasting with Informer

Efficient transformer-based model for LSTF.

Применение модели Informer от Hugging Face для задач многомерного вероятностного прогнозирования.

🤗Hugging face: https://huggingface.co/blog/informer

Paper: https://huggingface.co/docs/transformers/main/en/model_doc/informer

⭐️ Colab: https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multivariate_informer.ipynb

💨 Dataset: https://huggingface.co/docs/datasets/v2.7.0/en/package_reference/main_classes#datasets.Dataset.set_transform

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍26🔥3🥰1
Forwarded from Data Science Jobs
Data Engineer (lead)

Формат: классный офис в Москве/гибрид/удаленно;
Доход: 300-400К+ руб.;
Форма оформления: по ТК/ИП;

О нас: Мы занимаемся разработкой data-платформы, в рамках которой развиваются различные data-продукты:
• рекомендательные системы;
• сервисы аналитики и визуализации данных;
• ML-модели;
• иные решения для решения бизнес-задач.
Наша команда это 25 инженеров с сильнейшими компетенциями в ML, аналитике и работе с данными, и сейчас мы ищем классных ребят для дальнейшего роста.
У нас нет долгих согласований и бюрократии. Мы стремимся к быстрому внедрению в production, с последующей работой над улучшениями.

Что нужно будет делать:
• Проектировать, разрабатывать и поддерживать пайплайны для сбора и обработки данных;
• Обеспечивать SLA и качество данных;
• Готовить данные для моделей машинного обучения и участвовать в их продукционализации совместно с data science командой; • Работать в команде и развивать отдел DE.

Будет классно, если у тебя:
• Хорошее знание технологий из стека: Python, SQL, Spark, Airflow;
• Опыт работы на проектах с большими данными, понимание принципов распределенной обработки данных;
• Опыт продуктовой разработки в технологических компаниях;
• Опыт постановки задач;
• Опыт наставничества;
• Отличные коммуникативные навыки.

Ты покоришь наши сердца и разум, если у тебя:
• Опыт работы с облаками, особенно, с Яндекс.Облаком;
• Опыт разработки высоконагруженных бэкенд сервисов на Java, Scala или Python;
• Опыт работы с моделями машинного обучения в продакшене;
• Опыт работы с базами данных для аналитики, особенно, с ClickHouse.

Мы предлагаем:
• Работу в аккредитованной IT компании с сильнейшей командой в разных масштабных проектах;
• Гибридный график работы 5/2, с 10:00 - 19:00;
• ДМС со стоматологией;
• В современном офисе в стиле Лофт с капсулой медитации, спортзалом, большой современной библиотекой и кабинетом для записи подкастов и треков;
• Комфортную кухню с холодильником, кофемашиной, тостером, микроволновкой и Magic Bullet;
• Холодильник с напитками (соки, энергетики, вода и т.д.) и едой (сыры, колбасы, сырки и м.ч.);
• Каждую пятницу совместные обеды с разными кухнями мира за счет компании.


За подробностями пиши: tg @naikava

@datascienceml_jobs - вакансии Data Science, Devops
👍9🔥3🤔2
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 PyXAB - Python X-Armed Bandit

A Python Library for X-Armed Bandit and Online Blackbox Optimization Algorithms

PyXAB - это библиотека Python с открытым исходным кодом с реализацией алгоритмов X-Armed Bandit (
многорукий бандит).

🖥 Github: https://github.com/williamlwj/pyxab

Paper: https://arxiv.org/abs/2303.04030v1

⭐️ Docs: https://pyxab.readthedocs.io/

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍15🔥3🥰2
Please open Telegram to view this post
VIEW IN TELEGRAM
👍81🔥1
OpenOccupancy: A Large Scale Benchmark for Surrounding Semantic Occupancy Perception.

OpenOccupancy first surrounding semantic occupancy perception benchmar.

🖥 Github: https://github.com/jeffwang987/openoccupancy

Paper: https://arxiv.org/abs/2303.03991v1

⭐️ Dataset: https://paperswithcode.com/dataset/synthcity

💨 Project: https://www.mmlab-ntu.com/project/styleganex/

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍91🔥1
Erasing Concepts from Diffusion Models

A fine-tuning method that can erase a visual concept from a pre-trained diffusion model, given only the name of the style and using negative guidance as a teacher.

Метод тонкой настройки, который может убрать имитацию стиля конкретного художника или даже стереть целый класс объектов из вывода модели, сохранив при этом поведение и возможности модели по другим настройкам.


🖥 Github: https://github.com/rohitgandikota/erasing

Paper: https://arxiv.org/abs/2303.07345v1

⭐️ Dataset: https://paperswithcode.com/dataset/imagenet

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19😢43🔥2
GraphGym

Platform for designing and evaluating Graph Neural Networks (GNN).

GraphGym - это платформа для проектирования и оценки графовых нейронных сетей .

🖥 Github: https://github.com/snap-stanford/graphgym

Paper: https://arxiv.org/abs/2303.07666v1

⭐️ Dataset: https://paperswithcode.com/dataset/tieredimagenet

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
11👍8🔥1
Tuned Lens 🔎

Simple interface training and evaluating tuned lenses. A tuned lens allows us to peak at the iterative computations a transformer uses to compute the next token.

Инструменты для понимания того, как послойно работают прогнозы трансформеров.

pip install tuned-lens

🖥 Github: https://github.com/alignmentresearch/tuned-lens

Paper: https://arxiv.org/abs/2303.08112v1

⭐️ Dataset: https://paperswithcode.com/dataset/the-pile

🖥 Colab: https://colab.research.google.com/github/AlignmentResearch/tuned-lens/blob/main/notebooks/interactive.ipynb

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍112👎2🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
FateZero: Fusing Attentions for Zero-shot Text-based Video Editing

Video Style Editing Using Stable Diffusion.


Новый метод редактирования видео из текстовых промтов без предварительного обучения модели и без использования маски, специфичной для конкретного видео.

🖥 Github: https://github.com/chenyangqiqi/fatezero

Paper: https://arxiv.org/abs/2303.09535

💨 Project: https://fate-zero-edit.github.io/

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
11👍8🔥2
Математика дата саентиста - здесь мы публикуем математические задачи и гайды для машинного обучения с упором на практику. Проверяем ваши знания, а затем на основе ошибок предлагаем статьи и уроки.

Если хочешь познать дзен и понимать как работают алгоритмы, а не просто импортировать их, подписывайся. Здесь реально учат.

@ds_math
9🖕2👍1🔥1
Taming Diffusion Models for Audio-Driven Co-Speech Gesture Generation (CVPR 2023)

Novel Diffusion Audio-Gesture Transformer is devised to better attend to the information from multiple modalities and model the long-term temporal dependency. M

Новая система на основе диффузии для эффективного захвата кросс-модальных ассоциаций между аудио и жестами для высокоточной генерации жестов на основе аудио.

🖥 Github: https://github.com/advocate99/diffgesture

Paper: https://arxiv.org/abs/2303.09119v1

💨 Dataset: https://paperswithcode.com/dataset/beat

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
6🔥2👍1