🚶♂️ MotionGPT: Human Motion
as Foreign Language
MotionGPT consists of a motion tokenizer responsible for converting raw motion data into discrete motion tokens, as well as a motion-aware language model that learns to understand the motion tokens from large language pre-training models by corresponding textual denoscriptions.
MotionGPT, унифицированная, универсальная и удобная модель языка движения для решения множества задач, связанных с движением.
⏩ Project: https://motion-gpt.github.io/
🖥 Github: https://github.com/openmotionlab/motiongpt
📕 Paper: https://arxiv.org/pdf/2306.14795.pdf
🔗 Dataset: https://paperswithcode.com/dataset/amass
ai_machinelearning_big_data
as Foreign Language
MotionGPT consists of a motion tokenizer responsible for converting raw motion data into discrete motion tokens, as well as a motion-aware language model that learns to understand the motion tokens from large language pre-training models by corresponding textual denoscriptions.
MotionGPT, унифицированная, универсальная и удобная модель языка движения для решения множества задач, связанных с движением.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7👍5❤1🤯1
Крутые бесплатные курсы по большим языковым моделям.
▪Generative AI with Large Language Models
▪ChatGPT Prompt Engineering for Developers
▪LangChain for LLM Application Development
▪Building Systems with the ChatGPT API
▪Google Cloud Generative AI Learning Path
▪Introduction to Large Language Models with Google Cloud
▪LLM University
▪Full Stack LLM Bootcamp
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12🔥6❤2
💬 3D-Speaker: A Large-Scale Multi-Device, Multi-Distance, and Multi-Dialect Corpus for Speech Representation Disentanglement
A large-scale speech corpus to facilitate the research of speech representation disentanglement.
3D-Speaker - это набор инструментов с открытым исходным кодом и крупномасштабный корпус речи, для мультимодальной проверки дикторов, распознавания дикторов и разделение дикторов.
3D-Speaker содержит более 10 000 дикторов, каждый из которых одновременно записывается несколькими устройствами, расположенными на разных расстояниях, а некоторые дикторы говорят на нескольких диалектах.
🖥 Github: https://github.com/alibaba-damo-academy/3D-Speaker
📕 Paper: https://arxiv.org/abs/2306.15354v1
🔗 Dataset: https://3dspeaker.github.io/
ai_machinelearning_big_data
A large-scale speech corpus to facilitate the research of speech representation disentanglement.
3D-Speaker - это набор инструментов с открытым исходным кодом и крупномасштабный корпус речи, для мультимодальной проверки дикторов, распознавания дикторов и разделение дикторов.
3D-Speaker содержит более 10 000 дикторов, каждый из которых одновременно записывается несколькими устройствами, расположенными на разных расстояниях, а некоторые дикторы говорят на нескольких диалектах.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥5❤3👍2
AI writing assistant for recreational linguists, poets, creative writers, and/or researchers to use and study the ability of large-scale language models.
Это как Photoshop, но для создания текстового контента!
Продвинутый ИИ-помощник по написанию текстов и генерированию текста.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥5❤4❤🔥1
📚 5 Free Books on Natural Language Processing to Read in 2023
5 великолепных бесплатных книг по NLP, актуальных в 2023 году.
1. Speech and Language Processing
Authors: Dan Jurafsky and James H. Martin
Книга, написанная двумя профессорами Стэнфордского университета, по обработке речи и языка содержит исчерпывающее введение в мир НЛП. Она разбита на 3 раздела: Фундаментальные алгоритмы для НЛП, Приложения НЛП и Аннотирование лингвистической структуры.
2. Foundations of Statistical Natural Language Processing
Authors: Christopher D. Manning and Hinrich Schütze
Эта книга начинает с основ НЛП и постепенно погружает вас в математические аспекты, неодходимые для обработки естественного языка, такие как вероятностные пространства, теорема Байеса, дисперсия и многие другие.
3. Pattern Recognition and Machine Learning
Author: Christopher M. Bishop
Это детальное введение в область распознавания образов и машинного обучения.В конце каждой главы есть упражнение, подобранное таким образом, чтобы лучше объяснить читателю каждую концепцию.
4. Neural Network Methods in Natural Language Processing
Author: Yoav Goldberg
Книга начинается с изучения основ, таких как линейные модели, перцептроны, feed-forward, обучение нейронных сетей и тд. Автор использовал математический подход для объяснения этих фундаментальных элементов вместе с практическими примерами.
5. Practical Natural Language Processing
В этой книге рассказывается о том, как НЛП используется в реальном мире, о конвейере моделей НЛП, а также о текстовых данных и примерах использования, таких как чат-боты типа ChatGPT. В этой книге вы узнаете, как НЛП может быть использовано в различных отраслях, таких как розничная торговля, здравоохранение, финансы и др.Вы сможете узнать, как работает конвейер НЛП в каждой из областей, и понять, как использовать его в работе.
ai_machinelearning_big_data
5 великолепных бесплатных книг по NLP, актуальных в 2023 году.
1. Speech and Language Processing
Authors: Dan Jurafsky and James H. Martin
Книга, написанная двумя профессорами Стэнфордского университета, по обработке речи и языка содержит исчерпывающее введение в мир НЛП. Она разбита на 3 раздела: Фундаментальные алгоритмы для НЛП, Приложения НЛП и Аннотирование лингвистической структуры.
2. Foundations of Statistical Natural Language Processing
Authors: Christopher D. Manning and Hinrich Schütze
Эта книга начинает с основ НЛП и постепенно погружает вас в математические аспекты, неодходимые для обработки естественного языка, такие как вероятностные пространства, теорема Байеса, дисперсия и многие другие.
3. Pattern Recognition and Machine Learning
Author: Christopher M. Bishop
Это детальное введение в область распознавания образов и машинного обучения.В конце каждой главы есть упражнение, подобранное таким образом, чтобы лучше объяснить читателю каждую концепцию.
4. Neural Network Methods in Natural Language Processing
Author: Yoav Goldberg
Книга начинается с изучения основ, таких как линейные модели, перцептроны, feed-forward, обучение нейронных сетей и тд. Автор использовал математический подход для объяснения этих фундаментальных элементов вместе с практическими примерами.
5. Practical Natural Language Processing
В этой книге рассказывается о том, как НЛП используется в реальном мире, о конвейере моделей НЛП, а также о текстовых данных и примерах использования, таких как чат-боты типа ChatGPT. В этой книге вы узнаете, как НЛП может быть использовано в различных отраслях, таких как розничная торговля, здравоохранение, финансы и др.Вы сможете узнать, как работает конвейер НЛП в каждой из областей, и понять, как использовать его в работе.
ai_machinelearning_big_data
👍20❤6🔥4
А с собакой в офис можно?
Ответ: да, если вы работаете в СберМаркете
Ребята создали комфортное pet-friendly пространство. В московском офисе компании домашние любимцы не мешают работе, а, наоборот, помогают сотрудникам улучшить настроение и за счёт этого повысить продуктивность. И как же приятно в обеденный перерыв не просто сходить за кофе, а выйти на полноценную прогулку со своим питомцем!
А чтобы не забывать о любимых хвостиках даже в рабочих чатах, ребята сделали с ними стикеры. Ну разве не прелесть!
Хотите тоже работать в СберМаркете, водить своего пёсика в офис и вместе с командой профессионалов определять будущее доставки из магазинов и ресторанов? Ищите вакансии на сайте
Реклама. ООО «Инстамарт Сервис», 115035, Москва, ОГРН 1187746494980. 12+
Ответ: да, если вы работаете в СберМаркете
Ребята создали комфортное pet-friendly пространство. В московском офисе компании домашние любимцы не мешают работе, а, наоборот, помогают сотрудникам улучшить настроение и за счёт этого повысить продуктивность. И как же приятно в обеденный перерыв не просто сходить за кофе, а выйти на полноценную прогулку со своим питомцем!
А чтобы не забывать о любимых хвостиках даже в рабочих чатах, ребята сделали с ними стикеры. Ну разве не прелесть!
Хотите тоже работать в СберМаркете, водить своего пёсика в офис и вместе с командой профессионалов определять будущее доставки из магазинов и ресторанов? Ищите вакансии на сайте
Реклама. ООО «Инстамарт Сервис», 115035, Москва, ОГРН 1187746494980. 12+
🔥11🙉6💊4❤3😁1🕊1
🧍♂ BEDLAM: Bodies Exhibiting Detailed Lifelike Animated Motion
BEDLAM is useful for a variety of tasks and all images, ground truth bodies, 3D clothing, support code, and more are available for research purposes.
Нейронная сеть, обученная только на синтетических данных, которая достигает самой высокой точности при решении задачи оценки 3D позы и формы человека (HPS) по реальным изображениям.
🖥 Github: https://github.com/pixelite1201/BEDLAM
📕 Paper: https://bedlam.is.tuebingen.mpg.de/media/upload/BEDLAM_CVPR2023.pdf
🔗 Render code: https://github.com/PerceivingSystems/bedlam_render
🎞 Video: https://youtu.be/OBttHFwdtfI
👑 Dataset: https://paperswithcode.com/dataset/bedlam
ai_machinelearning_big_data
BEDLAM is useful for a variety of tasks and all images, ground truth bodies, 3D clothing, support code, and more are available for research purposes.
Нейронная сеть, обученная только на синтетических данных, которая достигает самой высокой точности при решении задачи оценки 3D позы и формы человека (HPS) по реальным изображениям.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7👍4❤2🤔1👾1
This media is not supported in your browser
VIEW IN TELEGRAM
An open-source Python library for easily generating animations of ML algorithms directly from code.
ManimML - это фреймворк для создания красочной, интерактивной анимации и визуализации различных концепций и алгоритмов машинного обучения.
Пример:
from manim_ml.neural_network import NeuralNetwork, Convolutional2DLayer, FeedForwardLayer
# Make nn
nn = NeuralNetwork([
Convolutional2DLayer(1, 7, filter_spacing=0.32),
Convolutional2DLayer(3, 5, 3, filter_spacing=0.32, activation_function="ReLU"),
FeedForwardLayer(3, activation_function="Sigmoid"),
],
layer_spacing=0.25,
)
self.add(nn)
# Play animation
forward_pass = nn.make_forward_pass_animation()
self.play(forward_pass)
📌 Project: https://www.manim.community/
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍24❤10🥰1
🚀 NAUTILUS: boosting Bayesian importance nested sampling with deep learning
A novel approach to boost the efficiency of the importance nested sampling (INS) technique for Bayesian posterior and evidence estimation using deep learning.
Nautilus - это проект от MIT на Python для оценки байесовской апостериорной вероятности. Nautilus обладает высокой точностью, по сравнению с традиционными методами оценки МСМС и Nested Sampling.
Пример:
🖥 Github: https://github.com/johannesulf/nautilus
⭐️ Docs: https://nautilus-sampler.readthedocs.io/
📕 Paper: https://arxiv.org/abs/2306.16923v1
ai_machinelearning_big_data
A novel approach to boost the efficiency of the importance nested sampling (INS) technique for Bayesian posterior and evidence estimation using deep learning.
Nautilus - это проект от MIT на Python для оценки байесовской апостериорной вероятности. Nautilus обладает высокой точностью, по сравнению с традиционными методами оценки МСМС и Nested Sampling.
Пример:
pip install nautilus-sampler
import corner
import numpy as np
from nautilus import Prior, Sampler
from scipy.stats import multivariate_normal
prior = Prior()
for key in 'abc':
prior.add_parameter(key)
def likelihood(param_dict):
x = [param_dict[key] for key in 'abc']
return multivariate_normal.logpdf(x, mean=[0.4, 0.5, 0.6], cov=0.01)
sampler = Sampler(prior, likelihood)
sampler.run(verbose=True)
points, log_w, log_l = sampler.posterior()
corner.corner(points, weights=np.exp(log_w), labels='abc')
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11🔥3🥰3
🏌️ GlOttal-flow LPC Filter (GOLF)
A DDSP-based neural vocoder.
Новый метод синтеза поющего голоса (SVS), использующий физические характеристики человеческого голоса с помощью дифференцируемой цифровой обработки сигнала
🖥 Github: https://github.com/yoyololicon/golf
📕 Paper: https://arxiv.org/abs/2306.17252v1
🔗 Demo: https://yoyololicon.github.io/golf-demo/
ai_machinelearning_big_data
A DDSP-based neural vocoder.
Новый метод синтеза поющего голоса (SVS), использующий физические характеристики человеческого голоса с помощью дифференцируемой цифровой обработки сигнала
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7🔥5❤4
This media is not supported in your browser
VIEW IN TELEGRAM
🪄 Making a web app generator with open ML models
В этом руководстве показан подход к созданию приложения по генерации веб-контента на основе искусственного интеллекта (модель WizardCoder) путем потоковой передачи и рендеринга контента за один раз.
🖥 Github: https://github.com/huggingface/blog/blob/main/text-to-webapp.md
📕 HuggingFace: https://huggingface.co/blog/text-to-webapp
🔗 Demo: https://huggingface.co/spaces/jbilcke-hf/webapp-factory-wizardcoder
ai_machinelearning_big_data
В этом руководстве показан подход к созданию приложения по генерации веб-контента на основе искусственного интеллекта (модель WizardCoder) путем потоковой передачи и рендеринга контента за один раз.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥12❤7👍6
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Hierarchical Open-vocabulary Universal Image Segmentation
Decoupled text-image fusion mechanism and representation learning modules for both "things" and "stuff".
HIPIE - новая модель сегментации и обнаружения изображений, которая способна выполнять задачи сегментации на различных уровнях (объектов, частей объектов и подчастей) и задач в рамках единой структуры, управляемой ествественным языком.
🖥 Github: https://github.com/berkeley-hipie/hipie
📕 Paper: https://arxiv.org/abs/2307.00764v1
🔗 Project: http://people.eecs.berkeley.edu/~xdwang/projects/HIPIE/
🔗 Dataset: https://paperswithcode.com/dataset/pascal-panoptic-parts
ai_machinelearning_big_data
Decoupled text-image fusion mechanism and representation learning modules for both "things" and "stuff".
HIPIE - новая модель сегментации и обнаружения изображений, которая способна выполнять задачи сегментации на различных уровнях (объектов, частей объектов и подчастей) и задач в рамках единой структуры, управляемой ествественным языком.
🔗 Dataset: https://paperswithcode.com/dataset/pascal-panoptic-parts
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9🔥2🥰1
🚀 Генерации новой версии Kandinsky неотличимы от реальных фото
Kandinsky — это нейросеть от Сбера, которая генерирует изображения по описанию. Как рассказал зампред правления банка Александр Ведяхин, в ближайшее время в открытом доступе появится новая версия модели. Главные особенности обновления — повышения качества выходящих изображений, появление новых функций и более быстрая обработка запросов.
ai_machinelearning_big_data
Kandinsky — это нейросеть от Сбера, которая генерирует изображения по описанию. Как рассказал зампред правления банка Александр Ведяхин, в ближайшее время в открытом доступе появится новая версия модели. Главные особенности обновления — повышения качества выходящих изображений, появление новых функций и более быстрая обработка запросов.
ai_machinelearning_big_data
❤27🥱17🔥10👍4😁4🥰2🤔1🤓1
This media is not supported in your browser
VIEW IN TELEGRAM
🎨 Making ML-powered web games with Transformers.js
The goal of this tutorial is to show you how easy it is to make your own ML-powered web game.
Инструкция с кодом по созданию веб-игры с поддержкой ML в реальном времени, которая запускается полностью в вашем браузере (благодаря Transformers.js).
🖥 Github: https://github.com/xenova/doodle-dash
🤗 Hugging face: https://huggingface.co/blog/ml-web-games
⭐️ Code: https://github.com/xenova/doodle-dash
🔗 Demo: https://huggingface.co/spaces/Xenova/doodle-dash
🔗 Dataset: https://huggingface.co/datasets/Xenova/quickdraw-small
ai_machinelearning_big_data
The goal of this tutorial is to show you how easy it is to make your own ML-powered web game.
Инструкция с кодом по созданию веб-игры с поддержкой ML в реальном времени, которая запускается полностью в вашем браузере (благодаря Transformers.js).
🤗 Hugging face: https://huggingface.co/blog/ml-web-games
🔗 Dataset: https://huggingface.co/datasets/Xenova/quickdraw-small
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥15👍9❤3
NeurIPS, ICML, ACL, CVPR без PhD
Tinkoff Lab — лаборатория Тинькофф, в которой студенты работают над исследованиями в области технологий искусственного интеллекта.
Студенты Tinkoff Lab проводят эксперименты в области обработки естественного языка (NLP), компьютерного зрения (CV), обучения с подкреплением (RL) и рекомендательных систем (RecSys). По результатам экспериментов они пишут научные работы для наиболее значимых научных конференций: NeurIPS, ICML, ACL, CVPR и других.
📕 vc: https://vc.ru/education/742897
Tinkoff Lab — лаборатория Тинькофф, в которой студенты работают над исследованиями в области технологий искусственного интеллекта.
Студенты Tinkoff Lab проводят эксперименты в области обработки естественного языка (NLP), компьютерного зрения (CV), обучения с подкреплением (RL) и рекомендательных систем (RecSys). По результатам экспериментов они пишут научные работы для наиболее значимых научных конференций: NeurIPS, ICML, ACL, CVPR и других.
📕 vc: https://vc.ru/education/742897
vc.ru
Как студенту начать свой путь в науке через Tinkoff Lab — Образование на vc.ru
Молодые ученые из «Тинькофф» — об исследовательской лаборатории с мировым признанием.
👍142🔥9🤬5❤2
🦙 Focused Transformer: Contrastive Training for Context Scaling
LongLLaMA, a large language model capable of handling long contexts of 256k tokens or even more.
LongLLaMA - это большая языковая модель, способная обрабатывать очень длинные тексты (размером 256k токенов и даже больше). Модель основана на OpenLLaMA и доработана с помощью метода фокусированного преобразования (FoT).
🖥 Github: https://github.com/cstankonrad/long_llama
📕 Paper: https://arxiv.org/abs/2307.03170v1
🖥 Colab: https://colab.research.google.com/github/CStanKonrad/long_llama/blob/main/long_llama_colab.ipynb
🔗 Dataset: https://paperswithcode.com/dataset/pg-19
ai_machinelearning_big_data
LongLLaMA, a large language model capable of handling long contexts of 256k tokens or even more.
LongLLaMA - это большая языковая модель, способная обрабатывать очень длинные тексты (размером 256k токенов и даже больше). Модель основана на OpenLLaMA и доработана с помощью метода фокусированного преобразования (FoT).
🔗 Dataset: https://paperswithcode.com/dataset/pg-19
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥14👍4❤2
🦙Flacuna: A Vicuna made of Flan
Flacuna was developed by fine-tuning Vicuna on Flan-mini, a comprehensive instruction collection encompassing various tasks.
Flacuna была разработана путем доработки Vicuna на Flan-mini. Модель уже является отличным помощником в написании текстов, и настроена на решении задач широкого спектра.
Flacuna продемонстрировала заметное улучшение производительности при решении задач в нескольких эталонных датасетах.
🖥 Github: https://github.com/declare-lab/flacuna
📕 Paper: https://arxiv.org/abs//2307.02053
🚀 Model: https://huggingface.co/declare-lab/flacuna-13b-v1.0
🔗 Dataset: https://huggingface.co/datasets/declare-lab/flan-mini
ai_machinelearning_big_data
Flacuna was developed by fine-tuning Vicuna on Flan-mini, a comprehensive instruction collection encompassing various tasks.
Flacuna была разработана путем доработки Vicuna на Flan-mini. Модель уже является отличным помощником в написании текстов, и настроена на решении задач широкого спектра.
Flacuna продемонстрировала заметное улучшение производительности при решении задач в нескольких эталонных датасетах.
🚀 Model: https://huggingface.co/declare-lab/flacuna-13b-v1.0
🔗 Dataset: https://huggingface.co/datasets/declare-lab/flan-mini
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20🔥4❤2🌚1🙈1
🔎 DeepOnto: A Python Package for Ontology Engineering with Deep Learning
A package for ontology engineering with deep learning and language model.
DeepOnto - интресная библиотека на Python, которая предоставляет инструменты для реализации моделей глубокого обучения, создания методов и проведения оценки для различных онтологических исследований.
🖥 Github: https://github.com/KRR-Oxford/DeepOnto
📌 Project: https://krr-oxford.github.io/DeepOnto/
📕 Paper: https://arxiv.org/abs/2307.03067v1
🚀 Dataset: https://paperswithcode.com/dataset/ontolama
ai_machinelearning_big_data
A package for ontology engineering with deep learning and language model.
DeepOnto - интресная библиотека на Python, которая предоставляет инструменты для реализации моделей глубокого обучения, создания методов и проведения оценки для различных онтологических исследований.
pip install deeponto
📌 Project: https://krr-oxford.github.io/DeepOnto/
🚀 Dataset: https://paperswithcode.com/dataset/ontolama
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
❤11👍4🔥3
Как оптимизировать обучение ML-моделей с помощью Kubeflow Pipelines
Инженер по машинному обучению в ML-команде проектов для бизнесов и покупателей ВКонтакте рассказывает, чем Kubeflow Pipelines может быть полезен ML-специалисту и как в нём без потери существующей кодовой базы можно запускать готовые пайплайны.
В статье описывается, как с помощью библиотеки kfp и нескольких функций интегрировать существующий код для запуска ML-пайплайнов в инструмент Kubeflow Pipelines с удобным интерфейсом.
🔗 Хабр: https://habr.com/ru/companies/vk/articles/745874/
ai_machinelearning_big_data
Инженер по машинному обучению в ML-команде проектов для бизнесов и покупателей ВКонтакте рассказывает, чем Kubeflow Pipelines может быть полезен ML-специалисту и как в нём без потери существующей кодовой базы можно запускать готовые пайплайны.
В статье описывается, как с помощью библиотеки kfp и нескольких функций интегрировать существующий код для запуска ML-пайплайнов в инструмент Kubeflow Pipelines с удобным интерфейсом.
🔗 Хабр: https://habr.com/ru/companies/vk/articles/745874/
ai_machinelearning_big_data
Хабр
Как мы с помощью Kubeflow Pipelines оптимизировали обучение ML-моделей
Когда кто-то занимается машинным обучением, его задачи часто представляют так: обработать данные, провести несколько десятков экспериментов с разными архитектурами моделей и выбрать ту, которая даёт...
❤8👍4🔥2🥰1
Конвейер генерации данных для нейронного информационного поиска.
pip install inpars🚀 Dataset: https://paperswithcode.com/dataset/beir
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11🔥2❤1