Machinelearning – Telegram
383K subscribers
4.45K photos
857 videos
17 files
4.89K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
⭐️ ManimML: Communicating Machine Learning Architectures with Animation

An open-source Python library for easily generating animations of ML algorithms directly from code.

ManimML - это фреймворк для создания красочной, интерактивной анимации и визуализации различных концепций и алгоритмов машинного обучения.

Пример:

from manim_ml.neural_network import NeuralNetwork, Convolutional2DLayer, FeedForwardLayer
# Make nn
nn = NeuralNetwork([
Convolutional2DLayer(1, 7, filter_spacing=0.32),
Convolutional2DLayer(3, 5, 3, filter_spacing=0.32, activation_function="ReLU"),
FeedForwardLayer(3, activation_function="Sigmoid"),
],
layer_spacing=0.25,
)
self.add(nn)
# Play animation
forward_pass = nn.make_forward_pass_animation()
self.play(forward_pass)

🖥 Github: https://github.com/helblazer811/manimml

📕 Paper: https://arxiv.org/abs/2306.17108v1

📌 Project: https://www.manim.community/

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2410🥰1
🚀 NAUTILUS: boosting Bayesian importance nested sampling with deep learning

A novel approach to boost the efficiency of the importance nested sampling (INS) technique for Bayesian posterior and evidence estimation using deep learning.

Nautilus - это проект от MIT на Python для оценки байесовской апостериорной вероятности. Nautilus обладает высокой точностью,  по сравнению с традиционными методами оценки МСМС и Nested Sampling.

Пример:
pip install nautilus-sampler

import corner
import numpy as np
from nautilus import Prior, Sampler
from scipy.stats import multivariate_normal

prior = Prior()
for key in 'abc':
prior.add_parameter(key)

def likelihood(param_dict):
x = [param_dict[key] for key in 'abc']
return multivariate_normal.logpdf(x, mean=[0.4, 0.5, 0.6], cov=0.01)

sampler = Sampler(prior, likelihood)
sampler.run(verbose=True)
points, log_w, log_l = sampler.posterior()
corner.corner(points, weights=np.exp(log_w), labels='abc')

🖥 Github: https://github.com/johannesulf/nautilus

⭐️ Docs: https://nautilus-sampler.readthedocs.io/

📕 Paper: https://arxiv.org/abs/2306.16923v1


ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11🔥3🥰3
🏌️ GlOttal-flow LPC Filter (GOLF)

A DDSP-based neural vocoder.

Новый метод синтеза поющего голоса (SVS), использующий физические характеристики человеческого голоса с помощью дифференцируемой цифровой обработки сигнала

🖥 Github: https://github.com/yoyololicon/golf

📕 Paper: https://arxiv.org/abs/2306.17252v1

🔗Demo: https://yoyololicon.github.io/golf-demo/

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7🔥54
This media is not supported in your browser
VIEW IN TELEGRAM
🪄 Making a web app generator with open ML models

В этом руководстве показан подход к созданию приложения по генерации веб-контента на основе искусственного интеллекта (модель WizardCoder) путем потоковой передачи и рендеринга контента за один раз.

🖥 Github: https://github.com/huggingface/blog/blob/main/text-to-webapp.md

📕 HuggingFace: https://huggingface.co/blog/text-to-webapp

🔗Demo: https://huggingface.co/spaces/jbilcke-hf/webapp-factory-wizardcoder

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥127👍6
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Hierarchical Open-vocabulary Universal Image Segmentation

Decoupled text-image fusion mechanism and representation learning modules for both "things" and "stuff".

HIPIE - новая модель сегментации и обнаружения изображений, которая способна выполнять задачи сегментации на различных уровнях (объектов, частей объектов и подчастей) и задач в рамках единой структуры, управляемой
ествественным языком.

🖥 Github: https://github.com/berkeley-hipie/hipie

📕 Paper: https://arxiv.org/abs/2307.00764v1

🔗Project: http://people.eecs.berkeley.edu/~xdwang/projects/HIPIE/

🔗 Dataset: https://paperswithcode.com/dataset/pascal-panoptic-parts

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9🔥2🥰1
🚀 Генерации новой версии Kandinsky неотличимы от реальных фото

Kandinsky — это нейросеть от Сбера, которая генерирует изображения по описанию. Как рассказал зампред правления банка Александр Ведяхин, в ближайшее время в открытом доступе появится новая версия модели. Главные особенности обновления — повышения качества выходящих изображений, появление новых функций и более быстрая обработка запросов.

ai_machinelearning_big_data
27🥱17🔥10👍4😁4🥰2🤔1🤓1
This media is not supported in your browser
VIEW IN TELEGRAM
🎨 Making ML-powered web games with Transformers.js

The goal of this tutorial is to show you how easy it is to make your own ML-powered web game.

Инструкция с кодом по созданию веб-игры с поддержкой ML в реальном времени, которая запускается полностью в вашем браузере (благодаря Transformers.js).

🖥 Github: https://github.com/xenova/doodle-dash

🤗 Hugging face: https://huggingface.co/blog/ml-web-games

⭐️ Code: https://github.com/xenova/doodle-dash

🔗Demo: https://huggingface.co/spaces/Xenova/doodle-dash

🔗 Dataset: https://huggingface.co/datasets/Xenova/quickdraw-small

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥15👍93
NeurIPS, ICML, ACL, CVPR без PhD

Tinkoff Lab — лаборатория Тинькофф, в которой студенты работают над исследованиями в области технологий искусственного интеллекта.

Студенты Tinkoff Lab проводят эксперименты в области обработки естественного языка (NLP), компьютерного зрения (CV), обучения с подкреплением (RL) и рекомендательных систем (RecSys). По результатам экспериментов они пишут научные работы для наиболее значимых научных конференций: NeurIPS, ICML, ACL, CVPR и других.

📕 vc: https://vc.ru/education/742897
👍142🔥9🤬52
🦙 Focused Transformer: Contrastive Training for Context Scaling

LongLLaMA, a large language model capable of handling long contexts of 256k tokens or even more.

LongLLaMA - это большая языковая модель, способная обрабатывать очень длинные тексты (размером 256k токенов и даже больше). Модель основана на OpenLLaMA и доработана с помощью метода фокусированного преобразования (FoT).

🖥 Github: https://github.com/cstankonrad/long_llama

📕 Paper: https://arxiv.org/abs/2307.03170v1

🖥 Colab: https://colab.research.google.com/github/CStanKonrad/long_llama/blob/main/long_llama_colab.ipynb

🔗 Dataset: https://paperswithcode.com/dataset/pg-19

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥14👍42
🦙Flacuna: A Vicuna made of Flan

Flacuna was developed by fine-tuning Vicuna on Flan-mini, a comprehensive instruction collection encompassing various tasks.

Flacuna была разработана путем доработки Vicuna на Flan-mini. Модель уже является отличным помощником в написании текстов, и настроена на решении задач широкого спектра.
Flacuna продемонстрировала заметное улучшение производительности при решении задач в нескольких эталонных датасетах.


🖥 Github: https://github.com/declare-lab/flacuna

📕 Paper: https://arxiv.org/abs//2307.02053

🚀 Model: https://huggingface.co/declare-lab/flacuna-13b-v1.0

🔗 Dataset: https://huggingface.co/datasets/declare-lab/flan-mini

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20🔥42🌚1🙈1
🔎 DeepOnto: A Python Package for Ontology Engineering with Deep Learning

A package for ontology engineering with deep learning and language model.

DeepOnto - интресная библиотека на Python, которая предоставляет инструменты для реализации моделей глубокого обучения, создания методов и проведения оценки для различных онтологических исследований.

pip install deeponto

🖥 Github: https://github.com/KRR-Oxford/DeepOnto

📌 Project: https://krr-oxford.github.io/DeepOnto/

📕 Paper: https://arxiv.org/abs/2307.03067v1

🚀 Dataset: https://paperswithcode.com/dataset/ontolama

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
11👍4🔥3
Как оптимизировать обучение ML-моделей с помощью Kubeflow Pipelines

Инженер по машинному обучению в ML-команде проектов для бизнесов и покупателей ВКонтакте рассказывает, чем Kubeflow Pipelines может быть полезен ML-специалисту и как в нём без потери существующей кодовой базы можно запускать готовые пайплайны.

В статье описывается, как с помощью библиотеки kfp и нескольких функций интегрировать существующий код для запуска ML-пайплайнов в инструмент Kubeflow Pipelines с удобным интерфейсом.

🔗 Хабр: https://habr.com/ru/companies/vk/articles/745874/

ai_machinelearning_big_data
8👍4🔥2🥰1
⭐️ InPars Toolkit: A Unified and Reproducible Synthetic Data Generation Pipeline for Neural Information Retrieval

Конвейер генерации данных для нейронного информационного поиска.

pip install inpars

🖥 Github: https://github.com/zetaalphavector/inpars

📕 Paper: https://arxiv.org/abs/2307.04601v1

🚀 Dataset: https://paperswithcode.com/dataset/beir

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11🔥21
Forwarded from Yandex for Developers
⚡️ Анонсируем новую большую конференцию от Яндекса по прикладному ML — Practical ML Conf 2023

Пока вы наслаждаетесь тёплым летом, мы готовим для вас большую конференцию по прикладному Machine Learning — чтобы обсудить все изменения, которые постоянно происходят в ML-отрасли, и то, как их можно внедрить в свои проекты.

7 сентября вас ждут 500 экспертов, 8 профильных направлений и опытные ML-инженеры, которые меняют сферу уже сейчас. Поговорим о ключевых вопросах индустрии: генеративных моделях, Research, NLP, Hardware, CV, RecSys, MLOps и Ecomm.

Если вы хотите прочитать доклад о прикладном ML, то заполняйте форму до 17 июля. А если нет — save the date и ждите новые подробности: скоро мы начнём рассказывать о программе Practical ML Conf 2023.

До встречи 7 сентября на Practical ML Conf в Москве или онлайн!
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20🔥5🤬52
🔥 Generative Pretraining in Multimodality

Model can take in any single-modality or multimodal data input indiscriminately through a one-model-for-all autoregressive training process.

Emu - мультимодальная на основе трансформеров, которая может легко генерировать изображения и тексты в мультимодальном контексте.


🖥 Github: https://github.com/baaivision/emu

📕 Paper: https://arxiv.org/abs/2307.05222v1

🚀 Dataset: https://paperswithcode.com/dataset/mmc4

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍94🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
AnimateDiff

Effective framework to animate most of existing personalized text-to-image models once for all, saving the efforts in model-specific tuning.

Новый фреймворк для генерации видео из текста. Высокое качество анимаций, различные возможности для пролета камеры, множество стилей.

🖥 Github: https://github.com/guoyww/animatediff/

🖥 Colab: https://colab.research.google.com/github/camenduru/AnimateDiff-colab/blob/main/AnimateDiff_colab.ipynb

📕 Paper: https://arxiv.org/abs/2307.04725

🚀 Project: https://animatediff.github.io/

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍155🔥5
🧭 OpenCompass

OpenCompass is an LLM evaluation platform, supporting a wide range of models (LLaMA, ChatGLM2, ChatGPT, Claude, etc) over 50+ datasets.

OpenCompass - это платформа для оценки LLM моделей, поддерживающая широкий спектр моделей (LLaMA, ChatGLM2, ChatGPT, Claude и др.) на 50+ наборах данных.

Благодаря мощным алгоритмам и интуитивно понятному интерфейсу OpenCompass позволяет легко оценить качество и эффективность ваших моделей НЛП моделей.

🖥 Github: https://github.com/InternLM/opencompass

🖥 Documentation: https://opencompass.readthedocs.io/en/latest/

📕 Paper: https://arxiv.org/abs/2307.06281v1

🚀 Dataset: https://paperswithcode.com/dataset/mmbench

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11🔥41