⛓️🛠️ ChainForge: A Visual Toolkit for Prompt Engineering and LLM Hypothesis Testing
Среда визуального программирования с открытым исходным кодом для создания промптов, проведения экспериментов и оперативной оценки LLM.
🖥 Github: https://github.com/ianarawjo/ChainForge
⭐️ Project: https://chainforge.ai
📕 Paper: https://arxiv.org/abs/2309.09128v1
ai_machinelearning_big_data
Среда визуального программирования с открытым исходным кодом для создания промптов, проведения экспериментов и оперативной оценки LLM.
pip install chainforgeai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11🔥5❤2😁2
Artificial market simulation is a multi-agent simulation and run virtual markets on your computer.
Имитация искусственных рынков - это многоагентное моделирование и запуск виртуальных рынков на вашем компьютере. На искусственных рынках существуют виртуальные рынки и виртуальные агенты, имитирующие реальных трейдеров.
С помощью искусственного моделирования рынков мы можем анализировать механизмы того, что происходит на реальных рынках.
$ pip install pamsai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
❤19👍12🔥3
Fuzzer maintains over 90% attack success rate against ChatGPT and Llama-2 models.
Новый фреймворк для фаззинга , созданный на основе фреймворка AFL. Вместо ручного проектирования fuzzer автоматизирует генерацию шаблонов джейлбрейка для LLM.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12🔥4❤2
🚀Break-A-Scene: Extracting Multiple Concepts from a Single Image
Given method can learn a distinct token for each concept, and use natural language guidance to re-synthesize the individual concepts or combinations of them in various contexts
Новый Фреймворк от Google для декомпозиции сцен из изображений .
🖥 Github: https://github.com/google/break-a-scene
📕 Paper: https://arxiv.org/abs/2305.16311
⏩ Project: https://omriavrahami.com/break-a-scene/
📌 Video: https://www.youtube.com/watch?v=-9EA-BhizgM
ai_machinelearning_big_data
Given method can learn a distinct token for each concept, and use natural language guidance to re-synthesize the individual concepts or combinations of them in various contexts
Новый Фреймворк от Google для декомпозиции сцен из изображений .
📌 Video: https://www.youtube.com/watch?v=-9EA-BhizgM
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13❤2🔥2
🏆 LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models
13B and 70B 32k models with the supervised fine-tuning, which is feasible for long context
LongLoRA - эффективный подход к файнтюнингу, позволяющий расширить размер контекста предварительно обученных больших языковых моделей (БЯМ) при ограниченных вычислительных затратах.
🖥 Github: https://github.com/dvlab-research/longlora
📕 Paper: https://arxiv.org/abs/2309.12307v1
⭐️ Demo: https://b3cfcf9e79ff42df5f.gradio.live/
⏩ Dataset: https://paperswithcode.com/dataset/pg-19
ai_machinelearning_big_data
13B and 70B 32k models with the supervised fine-tuning, which is feasible for long context
LongLoRA - эффективный подход к файнтюнингу, позволяющий расширить размер контекста предварительно обученных больших языковых моделей (БЯМ) при ограниченных вычислительных затратах.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍22❤2🔥2
Vote If you want see ML stories
Проголосуйте за нас, если вы хотите увидеть ML сторисы от нашего канала/
Версия телеграм должна быть последней, работает только с премиум подписчиками. Для всех, кто проголосовал, будет доступен премиум контент в буст чате.
https://news.1rj.ru/str/ai_machinelearning_big_data?boost
Проголосуйте за нас, если вы хотите увидеть ML сторисы от нашего канала/
Версия телеграм должна быть последней, работает только с премиум подписчиками. Для всех, кто проголосовал, будет доступен премиум контент в буст чате.
https://news.1rj.ru/str/ai_machinelearning_big_data?boost
Telegram
Machinelearning
Проголосуйте за канал, чтобы он получил больше возможностей.
❤14👍1
🚀 Gold-YOLO: Efficient Object Detector via Gather-and-Distribute Mechanism
Gold-YOLO, which boosts the multi-scale feature fusion capabilities and achieves an ideal balance between latency and accuracy across all model scales.
Модель Gold-YOLO-N достигает выдающегося результата в обнаружении объектов и превосходит предыдущую модель SOTA YOLOv6-3.0-N с аналогичным FPS.
🖥 Github: https://github.com/huawei-noah/Efficient-Computing/tree/master/Detection/Gold-YOLO
📕 Paper: https://arxiv.org/abs/2309.11331v2
⏩ Dataset: https://paperswithcode.com/dataset/coco
ai_machinelearning_big_data?boost - boost to see premium content
Gold-YOLO, which boosts the multi-scale feature fusion capabilities and achieves an ideal balance between latency and accuracy across all model scales.
Модель Gold-YOLO-N достигает выдающегося результата в обнаружении объектов и превосходит предыдущую модель SOTA YOLOv6-3.0-N с аналогичным FPS.
ai_machinelearning_big_data?boost - boost to see premium content
Please open Telegram to view this post
VIEW IN TELEGRAM
👍16🔥4🥰2❤1
This media is not supported in your browser
VIEW IN TELEGRAM
Framework that harnesses the power of a text-to-image diffusion model for the task of text-driven video editing.
TokenFlow - это фреймворк, позволяющий последовательно редактировать видео, используя предварительно обученную модель диффузии текста в изображение, без дополнительного обучения и настройки.
Нейросеть генерирует анимации высокого качества, сохраняя расположение и динамику из исходого ролика.
🤗HF: https://huggingface.co/spaces/weizmannscience/tokenflow
ai_machinelearning_big_data?boost - boost to see premium content
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19🔥7❤4
🗣 Leveraging In-the-Wild Data for Effective Self-Supervised Pretraining in Speaker Recognition
Продвинутый инструментарий и набор данных для задач распознавания говорящего.
🖥 Github: https://github.com/wenet-e2e/wespeaker
📕 Paper: https://arxiv.org/abs/2309.11730v1
⏩ Demo: https://huggingface.co/spaces/wenet/wespeaker_demo
⭐️ Dataset: https://paperswithcode.com/dataset/wenetspeech
ai_machinelearning_big_data
Продвинутый инструментарий и набор данных для задач распознавания говорящего.
pip3 install wespeakerruntimeai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥27👍7❤4🥰1
🔎Detect Every Thing with Few Examples
DE-ViT surpasses the few-shot SoTA by 15 mAP on 10-shot and 7.2 mAP on 30-shot and one-shot SoTA by 2.8 AP50.
Высокоточный детектор объектов, который в отличие от популярного подхода с открытым словарем, описывает каждую категорию объектов не языком, а несколькими опорными изображениями. DE-ViT демонстрирует новые достижения в области обнаружения объектов с открытым словарем, несколькими снимками и одним снимком в сравнении с COCO и LVIS .
🖥 Github: https://github.com/mlzxy/devit
📕 Paper: https://arxiv.org/abs/2309.12969v1
⭐️ Dataset: https://paperswithcode.com/dataset/mscoco
ai_machinelearning_big_data
DE-ViT surpasses the few-shot SoTA by 15 mAP on 10-shot and 7.2 mAP on 30-shot and one-shot SoTA by 2.8 AP50.
Высокоточный детектор объектов, который в отличие от популярного подхода с открытым словарем, описывает каждую категорию объектов не языком, а несколькими опорными изображениями. DE-ViT демонстрирует новые достижения в области обнаружения объектов с открытым словарем, несколькими снимками и одним снимком в сравнении с COCO и LVIS .
git clone https://github.com/mlzxy/devit.gitai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍15🔥4❤2😁1
🎓 BayesDLL: Bayesian Deep Learning Library
New Bayesian neural network library for PyTorch for large-scale deep network
Новая библиотека байесовских нейронных сетей для PyTorch, предназначенную для работы с крупномасштабными глубокими сетями.
В библиотеке реализованы основные алгоритмы приближенного байесовского вывода: вариационный вывод, MC-dropout, стохастически-градиентный MCMC и аппроксимация Лапласа.
Основные отличия от других существующих библиотек байесовских нейронных сетей заключаются в следующем:
1) библиотека может работать с очень крупными моделями, в том числе с Vision Transformers
2) Практически не требует от пользователей модификации кода .
3)Позволяет использовать предварительно обученные веса модели в качестве средних значений, что полезно для проведения байесовских вычислений в крупномасштабных моделях типа ViTs, которые трудно оптимизировать с нуля на основе одних только исходных данных.
🖥 Github: https://github.com/samsunglabs/bayesdll
📕 Paper: https://arxiv.org/abs/2309.12928v1
⭐️ Dataset: https://paperswithcode.com/dataset/oxford-102-flower
ai_machinelearning_big_data
New Bayesian neural network library for PyTorch for large-scale deep network
Новая библиотека байесовских нейронных сетей для PyTorch, предназначенную для работы с крупномасштабными глубокими сетями.
В библиотеке реализованы основные алгоритмы приближенного байесовского вывода: вариационный вывод, MC-dropout, стохастически-градиентный MCMC и аппроксимация Лапласа.
Основные отличия от других существующих библиотек байесовских нейронных сетей заключаются в следующем:
1) библиотека может работать с очень крупными моделями, в том числе с Vision Transformers
2) Практически не требует от пользователей модификации кода .
3)Позволяет использовать предварительно обученные веса модели в качестве средних значений, что полезно для проведения байесовских вычислений в крупномасштабных моделях типа ViTs, которые трудно оптимизировать с нуля на основе одних только исходных данных.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥12❤11👍7