@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥70👍15❤8🏆3❤🔥1😁1
Обновление платформы YTsaurus
В новой версии YTsaurus Server 23.2.0 оптимизировали подсистему обработки данных, добавили OAuth‑аутентификацию и расширили возможности языка запросов динамических таблиц. Плюсом — еще несколько обновлений других частей платформы.
Подробности — в блоге.
@ai_machinelearning_big_data
В новой версии YTsaurus Server 23.2.0 оптимизировали подсистему обработки данных, добавили OAuth‑аутентификацию и расширили возможности языка запросов динамических таблиц. Плюсом — еще несколько обновлений других частей платформы.
Подробности — в блоге.
@ai_machinelearning_big_data
👍6🔥4❤3😁2
This media is not supported in your browser
VIEW IN TELEGRAM
👱 Arc2Face: A Foundation Model of Human Faces
TL; DR: крупный датасет изображений лиц в высоком разрешении, а также обученная на его основе модель генерации лиц , которая:
▪способна создавать фотореалистичные генерации за несколько секунд
▪обеспечивает полное сходство генераций с целевым изображением по сравнению с другими существующими моделями
▪построена на основе Stable Diffusion и может быть настроена для любых вариантов генераций, например, различных поз / выражений лица и тд.
▪Github: https://github.com/foivospar/Arc2Face
▪Project: https://arc2face.github.io
▪Demo: https://huggingface.co/spaces/FoivosPar/Arc2Face
▪Paper: https://arxiv.org/abs/2403.11641
@ai_machinelearning_big_data
TL; DR: крупный датасет изображений лиц в высоком разрешении, а также обученная на его основе модель генерации лиц , которая:
▪способна создавать фотореалистичные генерации за несколько секунд
▪обеспечивает полное сходство генераций с целевым изображением по сравнению с другими существующими моделями
▪построена на основе Stable Diffusion и может быть настроена для любых вариантов генераций, например, различных поз / выражений лица и тд.
▪Github: https://github.com/foivospar/Arc2Face
▪Project: https://arc2face.github.io
▪Demo: https://huggingface.co/spaces/FoivosPar/Arc2Face
▪Paper: https://arxiv.org/abs/2403.11641
@ai_machinelearning_big_data
❤11👍10🔥6😐1
Факультет компьютерных наук НИУ ВШЭ расширяет сотрудничество с Яндексом для подготовки специалистов по ИИ и ML.
ФКН был основан ВШЭ совместно с Яндексом 10 лет назад. За время своего существования он стал одним из лидеров в подготовке разработчиков и специалистов по ИИ и ML, выпустив более 3 000 человек,
В следующие 10 лет Яндекс и ВШЭ:
- Увеличат количество выпускников факультета по программам Яндекса в 4 раза
- Откроют магистратуру по ИИ в маркетинге и продукте
- Создадут направления по генеративным технологиям на магистерской программе "Современные компьютерные науки"
- Запустят студенческий кемп по машинному обучению
Обратите внимание, если планируете стать студентом — ВШЭ занимает второе место среди российских университетов по количеству публикаций на конференциях A*.
▪Подробнее
@ai_machinelearning_big_data
ФКН был основан ВШЭ совместно с Яндексом 10 лет назад. За время своего существования он стал одним из лидеров в подготовке разработчиков и специалистов по ИИ и ML, выпустив более 3 000 человек,
В следующие 10 лет Яндекс и ВШЭ:
- Увеличат количество выпускников факультета по программам Яндекса в 4 раза
- Откроют магистратуру по ИИ в маркетинге и продукте
- Создадут направления по генеративным технологиям на магистерской программе "Современные компьютерные науки"
- Запустят студенческий кемп по машинному обучению
Обратите внимание, если планируете стать студентом — ВШЭ занимает второе место среди российских университетов по количеству публикаций на конференциях A*.
▪Подробнее
@ai_machinelearning_big_data
👍33🔥9🤬4🥱3❤2🥰1😁1🤓1🤝1
This media is not supported in your browser
VIEW IN TELEGRAM
🔍 MagicLens: Self-Supervised Image Retrieval with Open-Ended Instructions
MagicLens: новое семейство моделей для поиска изображений от Google.
Они обучены на 36,7 млн высококачественных триплетов (исходное изображение, запрос, целевое изображение)с богатыми семантическими связями.
Самое интересное, что MagicLens превосходят предыдущую SOTA на 10 различных бенчмарках по поиску изображений, при этом сами модели в 50 раз меньше.
▪Project: https://open-vision-language.github.io/MagicLens/
▪Paper: https://arxiv.org/abs/2403.19651
▪HF: https://huggingface.co/papers/2403.19651
@ai_machinelearning_big_data
MagicLens: новое семейство моделей для поиска изображений от Google.
Они обучены на 36,7 млн высококачественных триплетов (исходное изображение, запрос, целевое изображение)с богатыми семантическими связями.
Самое интересное, что MagicLens превосходят предыдущую SOTA на 10 различных бенчмарках по поиску изображений, при этом сами модели в 50 раз меньше.
▪Project: https://open-vision-language.github.io/MagicLens/
▪Paper: https://arxiv.org/abs/2403.19651
▪HF: https://huggingface.co/papers/2403.19651
@ai_machinelearning_big_data
👍20❤5🔥5❤🔥1
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍29❤11🥰4❤🔥1
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11❤6🔥3😁3🤓1
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
❤18👍8🔥2
🏎 Ускоряем инференс LLM
На Хабре вышла статья ML-разработчика из команды YandexGPT с разбором задачи ускорения инференса больших языковых моделей. Подробно описаны как популярные методы (дистилляция и квантизация), так и более специфичные Speculative Decoding и Continuous Batching.
Автор показал на примере, с какими сложностями сталкиваются команды при внедрении LLM-ок в реальные продукты.
Habr: https://habr.com/ru/companies/yandex/articles/801119/
@ai_machinelearning_big_data
На Хабре вышла статья ML-разработчика из команды YandexGPT с разбором задачи ускорения инференса больших языковых моделей. Подробно описаны как популярные методы (дистилляция и квантизация), так и более специфичные Speculative Decoding и Continuous Batching.
Автор показал на примере, с какими сложностями сталкиваются команды при внедрении LLM-ок в реальные продукты.
Habr: https://habr.com/ru/companies/yandex/articles/801119/
@ai_machinelearning_big_data
👍19❤3🥰2😁1🗿1
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
😁25👍13🤣4❤3🔥3🤨1
⚡️ LLocalSearch: completely locally running meta search engine using LLM Agents
Это полностью локально работающая система метапоиска, использующая LLM-агентов.
Пользователь может задать вопрос, и система будет использовать цепочку ИИ-агентов для поиска ответа. Пользователь может видеть прогресс работы и окончательный ответ. Ключи OpenAI или Google API не требуются.
▪Github
@ai_machinelearning_big_data
Это полностью локально работающая система метапоиска, использующая LLM-агентов.
Пользователь может задать вопрос, и система будет использовать цепочку ИИ-агентов для поиска ответа. Пользователь может видеть прогресс работы и окончательный ответ. Ключи OpenAI или Google API не требуются.
▪Github
@ai_machinelearning_big_data
👍25🔥12❤2
🦖 DINO-Tracker: Taming DINO for Self-Supervised Point Tracking in a Single Video
👉 Институт Вейцмана только что выпустил код для новой SOTA для отслеживания объектов.
▪Github: https://github.com/AssafSinger94/dino-tracker
▪Project: https://dino-tracker.github.io/
▪Paper: https://arxiv.org/abs/2403.14548
@ai_machinelearning_big_data
👉 Институт Вейцмана только что выпустил код для новой SOTA для отслеживания объектов.
▪Github: https://github.com/AssafSinger94/dino-tracker
▪Project: https://dino-tracker.github.io/
▪Paper: https://arxiv.org/abs/2403.14548
@ai_machinelearning_big_data
👍12❤8🔥8
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍45🔥27❤5