Machinelearning – Telegram
385K subscribers
4.47K photos
864 videos
17 files
4.91K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
MWS Cloud запускает сервис MWS GPU on-premises — сервис для тех, кому не подходит облако.

Серверы с графическими ускорителями устанавливаются на площадке предприятия или в дата-центре MWS Cloud.

Команда поможет подобрать конфигурацию под ваши задачи, установит оборудование и возьмёт на себя поддержку. Можно выбрать готовое решение из более чем 20 конфигураций или собрать индивидуальное. Всего доступно 7 видов GPU. Покупка или аренда — на ваше усмотрение.

Сервис особенно актуален для промышленных компаний с существующими on-premises системами и медицинских организаций, использующих ИИ для диагностики.

Все конфигурации и условия — на странице сервиса.
🔥16👍117😁2🦄2🗿1💘1
🌟 PyRoki: Библиотека кинематики роботов на Python.

PyRoki (Python Robot Kinematics) - это модульный, расширяемый и кроссплатформенный инструментарий, заточенный под задачи кинематической оптимизации и реализованный полностью на Python.

Фишка библиотеки - в предоставлении дифференцируемой модели прямой кинематики робота, которая строится на основе URDF-файлов, тем самым избавляя инженера от необходимости вручную прописывать кинематические цепи: система не только парсит описание робота, но и автоматически генерирует примитивы коллизий.

С точки зрения математического аппарата, PyRoki интегрируется с решателем Levenberg-Marquardt (через jaxls). Это дает возможность проводить оптимизацию на многообразиях, а также обрабатывать жесткие ограничения с помощью решателя на основе модифицированной функции Лагранжа.

Библиотека предлагает готовые реализации cost-функций: поза рабочего органа, коллизии с самим собой или объектами мира и метрики манипулируемости.

Если стандартного набора недостаточно, архитектура позволяет задавать свои функции затрат, используя как автоматическое дифференцирование, так и аналитические якобианы.

Благодаря базе JAX, библиотека кроссплатформенна: ее работа возможна на CPU, GPU и TPU.

🟡При внедрении PyRoki в пайплайн важно учитывать специфику JIT-компиляции в JAX.

Компиляция триггерится при первом запуске, а также каждый раз, когда меняются формы входных данных: например, количество целей или препятствий.

Чтобы избежать расходов на перекомпиляцию, рекомендуется использовать предварительный паддинг массивов, что позволяет векторизовать вычисления для входов с различными шейпами.

Также стоит учитывать, что в библиотеке отсутствуют планировщики, основанные на сэмплировании (графы, деревья), поэтому задачи глобального планирования пути придется решать внешними средствами.

🟡Типы поддерживаемых соединений и геометрия ограничены.

На данный момент PyRoki работает исключительно с кинематическими деревьями; замкнутые механизмы или параллельные манипуляторы не поддерживаются.

Список доступных типов джоинтов ограничен 4 позициями: вращательные, непрерывные, призматические и фиксированные. Любые другие типы соединений, встреченные в URDF, будут автоматически интерпретироваться системой как фиксированные.

Для геометрии коллизий набор примитивов также фиксирован: поддерживаются сферы, капсулы, полупространства и карты высот.

Если ваша модель использует сложные меши, коллизии для них будут аппроксимироваться капсулами.

В вопросах производительности, особенно в сценариях с интенсивными проверками коллизий, PyRoki, вероятно, уступает CuRobo, хотя, как говорится в документации - сравнительные тесты скорости и точности авторами пока не проводились.


📌Лицензирование: MIT License.


🟡Страница проекта
🟡Arxiv
🟡Документация
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Robotics #Pyroki #Python
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍25🔥1310👏1👌1🤗1🦄1
Ускорит ли ИИ технологический и научный прогресс?

В гостях подкаста «Деньги любят техно» побывал Арутюн Аветисян, директор Института системного программирования РАН, академик, доктор физико‑математических наук.

Интересно послушать и посмотреть всем, кто задумывается о том:

— как строится карьера учёного в современной реальности;
— какие качества выделяют перспективного исследователя;
— что превращает гипотезу в реальный прорыв;
— способен ли ИИ ускорить технологический прогресс;
— какие вызовы несёт дальнейшая цифровизация и роботизация;
— как строить продуктивное взаимодействие между наукой, бизнесом и open‑source‑сообществом.

Ведущий — Денис Суржко, заместитель руководителя департамента анализа данных и моделирования ВТБ.

Эпизод точно будет полезен дата‑сайентистам и исследователям, которые задумываются о карьерных перспективах и хотят развиваться в своих сферах.

#Podcast #AI #ML #DataScience

Посмотреть 👈
Послушать 👈
10🙈10👍5🥰4🤗4🥱3🙏2🦄1🙊1
🌟 OMC25: датасет для вычислительной химии.

ОMC25 - крупнейший набор данных по молекулярным кристаллам, рассчитанный методом теории функционала плотности (DFT) в пакете VASP.

В основе датасета лежат структуры, полученные из траекторий релаксации молекулярных кристаллов. Сами исходные кристаллы были сгенерированы с помощью инструмента Genarris 3.0, который, в свою очередь, использовал молекулы из известного набора OE62. Это обеспечивает преемственность данных и четкую привязку к проверенным химическим структурам, но масштаб здесь совершенно иной.

Тренировочная часть содержит почти 25 млн. фреймов. Это данные по 207 тыс. кристаллов, которые, в свою очередь, произошли от 44 тыс. уникальных молекул.

Валидационная часть меньше, но тоже весовая: около 1,4 миллиона кадров. Данные упакованы в формате ase-db как объекты LMDBDatabase, что является стандартом в задачах машинного обучения для химии.

Исходные кристаллы были созданы программой Genarris 3.0. Она, в свою очередь, использовала молекулы из популярного набора OE62. Так что у данных есть четкая привязка к проверенным химическим структурам.

Работа с данными сета происходит через библиотеку fairchem. Каждая структура хранится как объект ASE Atoms, что привычно для инженеров, работающих с атомистическим моделированием.

Ключевые метки для обучения моделей включают полную энергию DFT, силы, действующие на атомы, и тензор напряжений . Это "каноническая троица" для обучения межатомных потенциалов. Помимо физических величин, в атрибуте atoms.info зашиты критически важные метаданные.

Помимо самого набора, авторы выложили базовый чекпоинт eSEN-S, обученный на всём OMC25.


📌Лицензирование : CC-BY-4.0 License


🟡Датасет
🟡Модель
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Dataset #FAIR #Chemistry
Please open Telegram to view this post
VIEW IN TELEGRAM
168👍18🔥8🦄1
📌Как превратить систему Grace-Hopper в настольный компьютер.

Занимательная история Дэвида Ноэля о том, как он купил ИИ-оборудование корпоративного класса, разработанное для серверных стоек с жидкостным охлаждением, которое затем переоборудовал под воздушное охлаждение, потом снова переоборудовал под водяное, пережил множество ситуаций, близких к катастрофе, и, в итоге получил настольный компьютер, способный запускать модели с 235 миллиардами параметров дома.

Это рассказ о сомнительных решениях и нестандартном подходе к решению проблем. И немного о том, что происходит, когда пытаешься превратить оборудование для ЦОДа в домашний сетап.

Если вы когда-либо задавались вопросом, что нужно для запуска действительно крупных моделей локально, или если вы просто хотите посмотреть, как кто-то разбирает оборудование стоимостью 80 000 долларов, полагаясь лишь на надежду и изопропанол, то эта статья не оставит вас равнодушным.

🔜 Читать рассказ полностью

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
48👍23🔥9🦄6🆒2
Media is too big
VIEW IN TELEGRAM
✔️ Financial Times назвала Дженсена Хуанга «Человеком года».

Деловое издание отметило ключевую роль Хуанга в трансформации полупроводниковой индустрии и глобальном распространении ИИ. NVIDIA оказалась в центре беспрецедентной инвестиционной программы частного сектора, что позволило ей первой в мире преодолеть рубеж рыночной капитализации в $5 трлн. и стать самой дорогой компанией на планете.

FT утверждает, что 2025 год войдет в историю как время, когда дата-центры окончательно закрепились в статусе критически важной инфраструктуры. Наращивание вычислительных мощностей для ИИ превратилась в драйвер экономики, обеспечив значительную долю роста ВВП США.
ft.com

✔️ NVIDIA предложила ИИ-концепцию для инженерного моделирования.

NVIDIA Research предлагает смену парадигмы Computer-Aided Engineering (CAE) на AI-Aided Engineering. Вместо прямых вычислений предлагается использовать ИИ-модели, обученные на физических законах и данных симуляций. Такие модели работают как быстрая замена классическим расчётам. Например, прогноз погоды можно сделать за минуты вместо дней.

Основной технический вектор исследований направлен на отказ от дискретизированных мешей. NVIDIA разрабатывает архитектуры, которые смогут работать напрямую с CAD-геометрией. Это сохранит физическую точность расчетов, значительно упростив подготовку данных.

В итоге AIAE-модели хотят интегрировать в платформу Omniverse для создания интерактивных цифровых двойников, где инженеры смогут мгновенно видеть результат при изменении параметров.
research.nvidia.com

✔️ Google открыла доступ к Gemini Deep Research.

Агент специализируется на длительных задачах по сбору и синтезу контекста, используя модель Gemini 3 Pro . Он самостоятельно формирует запросы, анализирует контент, выявляет пробелы в полученных данных и проводит повторный поиск до формирования качественного отчета.

Эффективность решения подтверждается рекордными 46.4% на бенчмарке HLE и 66.1% на собственном DeepSearchQA. В ближайших обновлениях обещают поддержку MCP, который позволит подключать агента к кастомным источникам данных, и нативную генерацию аналитических графиков.
blog.google


✔️ Allen Institute for AI обновил линейку моделей Olmo до версии 3.1.

Семейство пополнилось моделями Olmo 3.1 Think и Instruct на 32 млрд. параметров. Версия Think получила расширенное RL, в результате чего модель прибавила 5 пунктов в AIME и 20 в IFBench, обойдя предыдущую версию и закрепив за собой статус лидера среди полностью открытых ризонинг-моделей. Вариант Instruct, в свою очередь, оптимизирован для диалогов, работы с инструментами и удержания длительного контекста.

Параллельно Ai2 обновила и младшие модели Olmo RL-Zero 7B, специализирующиеся на математике и коде, повысив стабильность их обучения. Институт продолжает придерживаться принципов открытости: сообществу доступны не только веса, но и полные датасеты, трейн-код и логи.
Ai2 в сети Х

✔️ Runway представила модель мира GWM-1.

Новинка понимает законы физики, геометрию и причинно-следственные связи, предсказывая изменения среды кадр за кадром. Архитектура модели пока разделена на 3 направления, которые в будущем планируется объединить.

GWM-Worlds создает интерактивные виртуальные миры по текстовому или визуальному запросу в 720p при 24 fps. GWM-Robotics генерирует синтетические данные для обучения роботов, позволяя моделировать редкие сценарии и препятствия, а GWM-Avatars фокусируется на реалистичной симуляции человеческого поведения. Компания уже готовит SDK для доступа к инструментам робототехники и ведет переговоры с промышленными партнерами.
runwayml.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
60👍18🔥11💯2❤‍🔥1🤗1🗿1🦄1
📌Внутри нашего мозга работает аналог GPT с контекстным окном всего в 10 слов.

Представьте себе биологическую нейросеть, физический объем которой, если собрать все её ткани вместе, не превысит размер обычной клубники.

Именно такую компактную, но критически важную структуру описывает нейробиолог Эв Федоренко из MIT, посвятившая 15 лет изучению того, как наш мозг обрабатывает речь.

Её выводы звучат для инженеров и дата-сайентистов очень знакомо: внутри человеческой головы функционирует система, которая ведет себя подозрительно похоже на современные большие языковые модели. Это своего рода «бездумный» языковой процессор, который занимается маппингом слов и смыслов, но сам при этом абсолютно не умеет мыслить.

🟡Утверждение базируется на серьезном массиве данных.

Лаборатория Федоренко провела фМРТ-сканирование 1400 человек, чтобы построить детальную вероятностную карту мозговой активности.

Архитектура этой «языковой сети» оказалась удивительно стабильной и воспроизводимой: у большинства взрослых людей она локализуется в 3 конкретных зонах левой лобной доли и на протяженном участке вдоль средней височной извилины.

Федоренко называет эту структуру функциональным блоком, сравнимым с органом, вроде пищеварительной системы, или зоной распознавания лиц.

Самое интересное начинается, если посмотреть на функционал. Федоренко описывает эту сеть как парсер или набор указателей. Её задача сугубо утилитарна — работать интерфейсом между входными сигналами (звук, текст, жесты) и абстрактными представлениями смысла, хранящимися в совершенно других отделах мозга.

Сама языковая сеть не обладает ни эпизодической памятью, ни социальным интеллектом, ни способностью к рассуждению. Весь процесс раздумий происходит за её пределами.

Это объясняет феномен афазии: при повреждении этого «интерфейса» человек сохраняет сложное когнитивное мышление, но оказывается заперт внутри себя, потеряв доступ к словарю и грамматическим правилам.

🟡Сходство с LLM становится еще очевиднее, если взглянуть на ограничения системы.

Исследования показывают, что человеческая языковая сеть имеет крайне узкое контекстное окно: она способна эффективно обрабатывать чанки длиной максимум в 8–10 слов.

По сути, это довольно поверхностная система. Она реагирует на грамматически верную бессмыслицу Ноама Хомского «Colorless green ideas sleep furiously» так же активно, как и на осмысленные предложения. Ей важна структура и статистическая вероятность стыковки слов, а не истинность или глубокий смысл высказывания.

Это роднит её с ранними языковыми моделями: сеть просто выучила правила, по которым слова собираются в цепочки.

Данные Федоренко заставляют пересмотреть и классические представления об анатомии, ведь многие учебники до сих пор ссылаются на устаревшие концепции.

Например, зона Брока, которую десятилетиями считали центром речи, на деле оказалась областью моторного планирования. Она лишь готовит мышцы рта к артикуляции и активируется даже при произнесении полной бессмыслицы, работая как ведомый регион для получения команд.

Настоящая же языковая сеть мозга - это отдельный, специализированный вычислительный кластер, который, подобно ChatGPT, блестяще имитирует связность речи, даже если за ней не стоит никакой реальной мысли.


@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
120👍40💯22🤣21🔥9🤓5🥰3🙉3🦄3💅1
🖥 XiYan-SQL - инструмент для интерактивной работы с SQL

XiYan-SQL - это open-source решение, позволяющее генерировать, анализировать и выполнять SQL-запросы с использованием больших языковых моделей. Инструмент ориентирован на ускорение исследования данных и автоматизацию рутинных операций, связанных с запросами к базе.

Ключевые возможности:
- Генерация SQL из естественного языка -пользователь формулирует задачу обычными словами, а система преобразует её в корректный SQL-запрос.
- Интерактивная работа с базой данных - запросы можно оперативно уточнять, редактировать и выполнять, получая быстрый цикл обратной связи.
- Поддержка нескольких СУБД - PostgreSQL, MySQL, SQLite и другие.
- 🛠️ Минимальная конфигурация - подходит для анализа данных, прототипирования и облегчения доступа к базе без сложной инфраструктуры.


🔗 Репозиторий: github.com/XGenerationLab/XiYan-SQL

@ai_machinelearning_big_data


#sql #llm #ai #opensource #database #datatools #postgresql
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4923🔥13❤‍🔥6🦄1
This media is not supported in your browser
VIEW IN TELEGRAM
🧠 Сергей Брин рассказывает о своей новой привычке

Он разговаривает с Gemini Live прямо за рулём - обсуждает энергопотребление дата-центров, стоимость инфраструктуры и другие рабочие темы.

Это классический Google-style: тестировать собственный продукт в реальной жизни. Напоминает историю про Билла Гейтса, который снял радио из машины, чтобы постоянно думать о Microsoft.

Такой уровень одержимости - редкость. И, честно, именно он отличает по-настоящему больших фаундеров.

Интересная деталь: Сергей говорит, что версия Gemini, которой он пользуется в машине, заметно лучше того, что доступно публично сейчас.

@ai_machinelearning_big_data

#Gemini #google #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
84👍28🔥14😁12🤣12🥱10🤓4🙊2👏1🤨1💋1
Закрытая питч-сессия фонда «Восход» для ИИ-стартапов

Фонд «Восход» активно ищет новые проекты для инвестиций в области ИИ и проводит закрытую питч-сессию, чтобы отсмотреть как можно больше РФ-компаний этого профиля.

📅Отбор состоится 15 января 2026 года онлайн

Приоритетные направлени
я
Посмотрят все заявки в рамках темы, но фокус будет на следующих нишах:

📌Вертикальные ИИ-решения
📌Инфраструктура и инструменты для разработки ИИ
📌Инструменты для работы с данными для ИИ
📌Корпоративные ИИ-приложения и копайлоты

📌Другое

Подробную разбивку тем в каждой из ниш можно изучить в канале «Восхода».

Требования к проектам:
- необходимо наличие MVP и воронки клиентов (стадии late seed, A и старше);
- инкорпорирование в РФ;
- сформированная опытная команда.

Инвестиции
Фонд вкладывает от нескольких десятков миллионов рублей до 1 млрд руб в один проект. Проекты, которые заинтересуют фонд, будут включены в пайплайн для дальнейшей работы. Другие получат сразу обратную связь.

🔥Приглашенный эксперт отбора – глава направления ИИ в Т-банке Виктор Тарнавский.

О фонде
«Восход» инвестирует в российские быстрорастущие технологические компании на стадиях от seed до pre-IPO. Якорный инвестор — группа «Интеррос», объем фонда — 18 млрд руб. В портфеле 40 компаний.

❗️Чтобы принять участие, присылайте питч-деки в pdf до 30 декабря 19.00 на info_vld@voskhod.vc с пометкой "Проект на AI"

Реклама: АО «Аркадия» ИНН: 7808004270 erid:2Vtzqv87ERQ
👍5🤓5🤣3🗿32🦄1
⚡️ FAANG software engineer рассказал, как на самом деле выглядит «vibe coding» в FAANG

Спойлер: это не просто сидеть и писать код с ИИ. Большая часть работы происходит до того, как ты вообще откроешь редактор.

Как это выглядит на практике:

1. Technical Design Doc
Всё начинается с дизайн-документа. Это proposal, где ты доказываешь, что идея имеет смысл. Нужно согласие стейкхолдеров, команд и архитекторов. Здесь делается львиная доля работы.

2. Design Review
Дизайн-док проходит жёсткий разбор у senior-инженеров. Документ буквально «разрывают». И это нормально - боль просто переносят в начало, чтобы потом не чинить продакшн.

3. Детализация подсистем
После одобрения дизайн-дока команды несколько недель дописывают документацию по каждому подсервису и компоненту.

4. Backlog и спринты
Dev, PM и TPM вместе дробят систему на конкретные задачи и выстраивают порядок их реализации.

5. Разработка (вот тут появляется vibe coding)
Только теперь начинается кодинг. Используется TDD:
- сначала ИИ-агент пишет тесты
- затем тот же агент помогает реализовать фичу
ИИ здесь не замена инженеру, а мощный ускоритель.

6. Code Review
Перед мержем нужно одобрение двух разработчиков. ИИ всё чаще помогает и на этапе ревью.

7. Staging и production
Сначала тесты и проверка в staging. Если всё ок - деплой в прод.

Главный вывод:
В FAANG «vibe coding» работает только потому, что вокруг него стоит жёсткая инженерная дисциплина, дизайн-доки и процессы.
ИИ ускоряет выполнение задач, но не отменяет системное мышление и архитектуру.

reddit.com/r/vibecoding/comments/1myakhd/how_we_vibe_code_at_a_faang/
61🔥22👍10🥱7🥰5🌭1🦄1