نظریه گروه. جهانی پر از تقارن.
شاخهای از ریاضیات که به مطالعه گروهها اختصاص داره نظریه گروهها نامیده میشه. گروه از جمله مهمترین ساختارهای جبری است که نقش اساسی در جبر مجرد داره و در علوم مختلف مانند بلور شناسی، فیزیک، کوانتم و... از اهمیت بالایی برخوردار هست.
فکر تشکیل نظریه گروهها زمانی شکل گرفت که ریاضیدانان مشاهده کردن ساختارهایی را که مطالعه میکنن در خواصی مشترک هستن و اگر بتوانند همه این خواص را در مورد یک ساختار مشخص بررسی کنن در حقیقت بخش وسیعی از ساختارهای مشابه را مطالعه کردهاند و به این ترتیب در زمان صرفه جویی میشه.
#مطالعه_موردی
شاخهای از ریاضیات که به مطالعه گروهها اختصاص داره نظریه گروهها نامیده میشه. گروه از جمله مهمترین ساختارهای جبری است که نقش اساسی در جبر مجرد داره و در علوم مختلف مانند بلور شناسی، فیزیک، کوانتم و... از اهمیت بالایی برخوردار هست.
فکر تشکیل نظریه گروهها زمانی شکل گرفت که ریاضیدانان مشاهده کردن ساختارهایی را که مطالعه میکنن در خواصی مشترک هستن و اگر بتوانند همه این خواص را در مورد یک ساختار مشخص بررسی کنن در حقیقت بخش وسیعی از ساختارهای مشابه را مطالعه کردهاند و به این ترتیب در زمان صرفه جویی میشه.
#مطالعه_موردی
مرور تاریخی(9 دقیقه)
نظریه گروهها بهوسیله چهارشاخه عمده از ریاضیات جبر کلاسیک، نظریه اعداد، هندسه و آنالیز رشد و گسترش یافت. جبر کلاسیک در سال ۱۷۷۰ با کارهای ژوزف لویی لاگرانژ برروی معادلات چندجملهای پایه گذاری شد.
نظریه اعداد بهوسیله کارل فردریش گاوس در سال ۱۸۰۱ مورد مطالعه و گسترش هرچه بیشتر قرار گرفت و سی. اف. کلاین در زمینه هندسه و ارتباط تبدیلات هندسی و گروهها کارهای بسیار انجام دادهاست به طوری که او را پدر این بخش از نظریه گروهها میدانند و بنیانگذار شاخه آنالیز نیز هنری پوانکاره، اس. لی لای و سی. اف کلاین هستند.
اما اویلر(Euler)، گاوس(Gauss)، لاگرانژ(Lagrange)، آبل(Abel) و ریاضیدان فرانسوی گالوا(Galois) اولین کسانی بودند که در زمینه نظریه گروهها به تحقیق پرداخته بودند. خصوصاً گالوا بدلیل قضیه اساسی خود که رابطی بین گروهها و حلقهها است و امروزه آن را قضیه گالوا میخوانند بسیار مورد توجه است.
اگرچه مفهوم گروه تبدیلها در مطالعه هندسه به کندی صورت گرفته است، اما کار اصلی در گسترش مفهوم گروه از مطالعه معادلات چندجملهای حاصل شده است. یونانیان قدیم از روشهای حل معادله درجه دو آگاه بودند. در قرن شانزدهم قدمهایی برای حل معادلات درجه سوم و چهارم روی Q برداشته شد. اولین کاربرد گروهها در توصیف تأثیر جایگشتهای ریشههای یک معادله چند جملهای بودهاست که بهوسیله لاگرانژ مورد استفاده قرار گرفتهاست که بر مبنای همین او توانست نظریه جانشانی را سازمان دهد.
او کشف کرد که ریشههای همه مواردی را که او امتحان کردهاست توابعی گویا از ریشههای معادلات متناظرشان هستند. لئونارد اویلر(۱۷۰۷-۱۷۸۳) و ژوزف لویی لاگرانژ(۱۷۳۶-۱۸۱۳) هر دو، با ادامه کار با چند جملهایهای درجه پنجم و بالاتر سعی کردند معادله درجه پنجم کلی را حل کنند. لاگرانژ دریافته بود که بین درجه n معادله چند جملهای و گروه جایگشتی Sn باید رابطهای وجود داشته باشد. پس از او رافینی در تلاش برای اثبات عدم وجود راه حل مستقیم برای حل معادلات درجه پنجم و بالاتر گامهای دیگری را در زمینه نظریه گروهها برداشت.
اما این نیلس هنریک آبل(۱۸۰۲-۱۸۲۹) بود که سرانجام ثابت کرد پیدا کردن فرمولی برای حل معادله درجه پنجم کلی، تنها با جمع و تفریق و ضرب و تقسیم و ریشه گیری ممکن نیست.
در طی همین دوران، اواریست گالوا (۱۸۱۱-۱۸۳۲) ریاضیدان معروف فرانسوی وجود شرط لازم و کافی برای حل چند جملهای درجه پنجم یا بالاتر با ضرایب گویا، به وسیله رادیکالها را تحقیق کرد. در کار گالوا ساختارهای گروهی و هیاتها به کار میروند.گالوا نخستین اثر خود را در مورد نظریه گروهها در سن ۱۸ سالگی(۱۸۲۹)منتشر ساخت. اما کمکهای او تا قبل از انتشار مجموعه مقالاتش در سال ۱۸۴۶ مورد توجه قرار نگرفت.
به دنبال دستاوردهای گالوا، نظریه گروهها جای خود را در بسیاری از زمینههای ریاضی باز کرد. مثلا، ریاضی دان آلمانی فلیکس کلاین (۱۸۴۹-۱۹۲۹) در آنچه که به برنامه ارلانگر معروف است، سعی کرد که تمام هندسههای موجود را بر حسب گروه تبدیلهایی که تحت آنها ویژگیهای هندسه ناوردا بودند تدوین کند.
بعد از او آرتور کیلی و آگوستین لویی کوشی به اهمیت کارهای گالوا پی بردند و به تحقیقات بیشتر در این زمینه پرداختند. از جمله ریاضیدانانی که در قرن نوزدهم در زمینه نظریه گروهها کار میکردند میتوان برتراند، چارلز هرمیت، فروبنیوس و لئوپارد کرونکر و امیل ماتیو را نام برد.
تا آن زمان اصول موضوع معینی برای تعریف گروه وجود نداشت. در سال ۱۸۵۴ کیلی اولین اصول موضوع را برای گروهها ارائه داد اما تعریف وی به زودی فاقد ارزش شد. در سال ۱۸۷۰، کرونکر مجدداً اصول موضوعی را برای گروهها پایه گذاشت. همچنین اچ. وبر در سال ۱۸۸۲، تعریفی برای گروههای متناهی و در سال ۱۸۸۳ تعریفی برای گروههای نامتناهی انجام داد.
والتر فون دایک در سال ۱۸۸۲ اولین تعریف مدرن از گروه را ارائه داد.
مطالعه گروههای لای و زیرگروههای گسسته شان و گروههای تبدیلی در سال ۱۸۸۴ به طور منظم توسط سوفوس لای شورع شد.
در طی قرن بیستم پژوهشهای بسیار زیادی برای تحلیل ساختار گروههای متناهی صورت گرفت. در دهههای اخیر، ریاضیدانان در جست و جوی همه گروههای ساده متناهی و توضیح نقش آنها در ساختار تمام گروههای متناهی بودهاند. از جمله پشگامان این بسط، والترفیت، جان تامسن، دانیل گورنشتین،میشاییل آشباخر و رابرت گریس هستند.
امروزه نظریه گروهها به بنیادیترین نظریهها در جبر مجرد تبدیل شدهاست و منبع تحقیقات فراوانی برای ریاضیدانان است.گروهها
ابتدا یادآوری میکنیم که یک ساختمان جبری عبارت است از یک مجموعه به همراه یک یا چند عمل دوتایی و رابطه که روی آن مجموعه تعریف شدهاست. گروه نیز از جمله ساختمانهای جبری است.
نظریه گروهها بهوسیله چهارشاخه عمده از ریاضیات جبر کلاسیک، نظریه اعداد، هندسه و آنالیز رشد و گسترش یافت. جبر کلاسیک در سال ۱۷۷۰ با کارهای ژوزف لویی لاگرانژ برروی معادلات چندجملهای پایه گذاری شد.
نظریه اعداد بهوسیله کارل فردریش گاوس در سال ۱۸۰۱ مورد مطالعه و گسترش هرچه بیشتر قرار گرفت و سی. اف. کلاین در زمینه هندسه و ارتباط تبدیلات هندسی و گروهها کارهای بسیار انجام دادهاست به طوری که او را پدر این بخش از نظریه گروهها میدانند و بنیانگذار شاخه آنالیز نیز هنری پوانکاره، اس. لی لای و سی. اف کلاین هستند.
اما اویلر(Euler)، گاوس(Gauss)، لاگرانژ(Lagrange)، آبل(Abel) و ریاضیدان فرانسوی گالوا(Galois) اولین کسانی بودند که در زمینه نظریه گروهها به تحقیق پرداخته بودند. خصوصاً گالوا بدلیل قضیه اساسی خود که رابطی بین گروهها و حلقهها است و امروزه آن را قضیه گالوا میخوانند بسیار مورد توجه است.
اگرچه مفهوم گروه تبدیلها در مطالعه هندسه به کندی صورت گرفته است، اما کار اصلی در گسترش مفهوم گروه از مطالعه معادلات چندجملهای حاصل شده است. یونانیان قدیم از روشهای حل معادله درجه دو آگاه بودند. در قرن شانزدهم قدمهایی برای حل معادلات درجه سوم و چهارم روی Q برداشته شد. اولین کاربرد گروهها در توصیف تأثیر جایگشتهای ریشههای یک معادله چند جملهای بودهاست که بهوسیله لاگرانژ مورد استفاده قرار گرفتهاست که بر مبنای همین او توانست نظریه جانشانی را سازمان دهد.
او کشف کرد که ریشههای همه مواردی را که او امتحان کردهاست توابعی گویا از ریشههای معادلات متناظرشان هستند. لئونارد اویلر(۱۷۰۷-۱۷۸۳) و ژوزف لویی لاگرانژ(۱۷۳۶-۱۸۱۳) هر دو، با ادامه کار با چند جملهایهای درجه پنجم و بالاتر سعی کردند معادله درجه پنجم کلی را حل کنند. لاگرانژ دریافته بود که بین درجه n معادله چند جملهای و گروه جایگشتی Sn باید رابطهای وجود داشته باشد. پس از او رافینی در تلاش برای اثبات عدم وجود راه حل مستقیم برای حل معادلات درجه پنجم و بالاتر گامهای دیگری را در زمینه نظریه گروهها برداشت.
اما این نیلس هنریک آبل(۱۸۰۲-۱۸۲۹) بود که سرانجام ثابت کرد پیدا کردن فرمولی برای حل معادله درجه پنجم کلی، تنها با جمع و تفریق و ضرب و تقسیم و ریشه گیری ممکن نیست.
در طی همین دوران، اواریست گالوا (۱۸۱۱-۱۸۳۲) ریاضیدان معروف فرانسوی وجود شرط لازم و کافی برای حل چند جملهای درجه پنجم یا بالاتر با ضرایب گویا، به وسیله رادیکالها را تحقیق کرد. در کار گالوا ساختارهای گروهی و هیاتها به کار میروند.گالوا نخستین اثر خود را در مورد نظریه گروهها در سن ۱۸ سالگی(۱۸۲۹)منتشر ساخت. اما کمکهای او تا قبل از انتشار مجموعه مقالاتش در سال ۱۸۴۶ مورد توجه قرار نگرفت.
به دنبال دستاوردهای گالوا، نظریه گروهها جای خود را در بسیاری از زمینههای ریاضی باز کرد. مثلا، ریاضی دان آلمانی فلیکس کلاین (۱۸۴۹-۱۹۲۹) در آنچه که به برنامه ارلانگر معروف است، سعی کرد که تمام هندسههای موجود را بر حسب گروه تبدیلهایی که تحت آنها ویژگیهای هندسه ناوردا بودند تدوین کند.
بعد از او آرتور کیلی و آگوستین لویی کوشی به اهمیت کارهای گالوا پی بردند و به تحقیقات بیشتر در این زمینه پرداختند. از جمله ریاضیدانانی که در قرن نوزدهم در زمینه نظریه گروهها کار میکردند میتوان برتراند، چارلز هرمیت، فروبنیوس و لئوپارد کرونکر و امیل ماتیو را نام برد.
تا آن زمان اصول موضوع معینی برای تعریف گروه وجود نداشت. در سال ۱۸۵۴ کیلی اولین اصول موضوع را برای گروهها ارائه داد اما تعریف وی به زودی فاقد ارزش شد. در سال ۱۸۷۰، کرونکر مجدداً اصول موضوعی را برای گروهها پایه گذاشت. همچنین اچ. وبر در سال ۱۸۸۲، تعریفی برای گروههای متناهی و در سال ۱۸۸۳ تعریفی برای گروههای نامتناهی انجام داد.
والتر فون دایک در سال ۱۸۸۲ اولین تعریف مدرن از گروه را ارائه داد.
مطالعه گروههای لای و زیرگروههای گسسته شان و گروههای تبدیلی در سال ۱۸۸۴ به طور منظم توسط سوفوس لای شورع شد.
در طی قرن بیستم پژوهشهای بسیار زیادی برای تحلیل ساختار گروههای متناهی صورت گرفت. در دهههای اخیر، ریاضیدانان در جست و جوی همه گروههای ساده متناهی و توضیح نقش آنها در ساختار تمام گروههای متناهی بودهاند. از جمله پشگامان این بسط، والترفیت، جان تامسن، دانیل گورنشتین،میشاییل آشباخر و رابرت گریس هستند.
امروزه نظریه گروهها به بنیادیترین نظریهها در جبر مجرد تبدیل شدهاست و منبع تحقیقات فراوانی برای ریاضیدانان است.گروهها
ابتدا یادآوری میکنیم که یک ساختمان جبری عبارت است از یک مجموعه به همراه یک یا چند عمل دوتایی و رابطه که روی آن مجموعه تعریف شدهاست. گروه نیز از جمله ساختمانهای جبری است.