Data Analyst Interview Resources – Telegram
Data Analyst Interview Resources
52.6K subscribers
273 photos
1 video
53 files
346 links
Join our telegram channel to learn how data analysis can reveal fascinating patterns, trends, and stories hidden within the numbers! 📊

For ads & suggestions: @love_data
Download Telegram
📊 Pandas Interview Question (Frequently Asked!)

Interviewers love to ask this:

“Your dataset has duplicate records. How will you handle them in Pandas?”

Answer:

➡️ Use df.duplicated() to identify duplicate rows.
➡️ Use df.drop_duplicates() to remove them cleanly.
➡️ You can also target specific columns using the subset parameter.

👍 React if you want more frequently asked Pandas, SQL, PowerBI interview questions for Data Analyst roles!
👍52
𝗙𝘂𝗹𝗹 𝗦𝘁𝗮𝗰𝗸 𝗗𝗲𝘃𝗲𝗹𝗼𝗽𝗺𝗲𝗻𝘁 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗣𝗿𝗼𝗴𝗿𝗮𝗺 😍

* JAVA- Full Stack Development With Gen AI
* MERN- Full Stack Development With Gen AI

Highlightes:-
* 2000+ Students Placed
* Attend FREE Hiring Drives at our Skill Centres
* Learn from India's Best Mentors

𝐑𝐞𝐠𝐢𝐬𝐭𝐞𝐫 𝐍𝐨𝐰👇 :- 

https://pdlink.in/4hO7rWY

Hurry, limited seats available!
𝐒𝐐𝐋 𝐂𝐚𝐬𝐞 𝐒𝐭𝐮𝐝𝐢𝐞𝐬 𝐟𝐨𝐫 𝐈𝐧𝐭𝐞𝐫𝐯𝐢𝐞𝐰:

Join for more: https://news.1rj.ru/str/sqlanalyst

1. Danny’s Diner:
Restaurant analytics to understand the customer orders pattern.
Link: https://8weeksqlchallenge.com/case-study-1/

2. Pizza Runner
Pizza shop analytics to optimize the efficiency of the operation
Link: https://8weeksqlchallenge.com/case-study-2/

3. Foodie Fie
Subnoscription-based food content platform
Link: https://lnkd.in/gzB39qAT

4. Data Bank: That’s money
Analytics based on customer activities with the digital bank
Link: https://lnkd.in/gH8pKPyv

5. Data Mart: Fresh is Best
Analytics on Online supermarket
Link: https://lnkd.in/gC5bkcDf

6. Clique Bait: Attention capturing
Analytics on the seafood industry
Link: https://lnkd.in/ggP4JiYG

7. Balanced Tree: Clothing Company
Analytics on the sales performance of clothing store
Link: https://8weeksqlchallenge.com/case-study-7

8. Fresh segments: Extract maximum value
Analytics on online advertising
Link: https://8weeksqlchallenge.com/case-study-8
3
📊 Pandas Interview Question (Frequently Asked!)

Interviewers love to ask this:

“Your dataset has duplicate records. How will you handle them in Pandas?”

Answer:

➡️ Use df.duplicated() to identify duplicate rows.
➡️ Use df.drop_duplicates() to remove them cleanly.
➡️ You can also target specific columns using the subset parameter.

👍 React if you want more frequently asked Pandas, SQL, PowerBI interview questions for Data Analyst roles!
6
📌 SQL Interview Question (Must-Know)

Question:

You have a table orders with the following columns:
order_id, customer_id, order_date, order_amount

👉 Write an SQL query to find the total order amount for each customer who has placed more than 3 orders.

Solution:

SELECT
customer_id,
SUM(order_amount) AS total_order_amount
FROM orders
GROUP BY customer_id
HAVING COUNT(order_id) > 3;

🧠 Explanation:

GROUP BY customer_id → groups orders per customer

SUM(order_amount) → calculates total spending

HAVING COUNT(order_id) > 3 → filters customers with more than 3 orders

👍 React with 🔥 or 👍 if this helped

📊 Want more SQL interview questions & real-world scenarios? React and stay tuned!
2
🚀 𝗜𝗜𝗧 𝗥𝗼𝗼𝗿𝗸𝗲𝗲 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 & 𝗔𝗜 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻

Placement Assistance With 5000+ companies.

Open to everyone
100% Online | 6 Months
Industry-ready curriculum
Taught By IIT Roorkee Professors

🔥 Companies are actively hiring candidates with Data Science & AI skills.

Deadline: 31st January 2026

𝗥𝗲𝗴𝗶𝘀𝘁𝗲𝗿 𝗡𝗼𝘄 👇 :- 

https://pdlink.in/49UZfkX

Limited seats only
1
Top 10 Excel Interview Questions & Answers 📊💼

1️⃣ What is Excel and why is it used?
Excel is a spreadsheet program used for organizing, analyzing, and storing data in tabular form. It's widely used for data analysis, reporting, and financial modeling.

2️⃣ Key Excel components?
- Ribbon: Main menu
- Worksheet: A single sheet
- Workbook: A collection of worksheets
- Cell: Intersection of a row and column

3️⃣ What are Excel Functions?
Predefined formulas that perform specific calculations (e.g., SUM, AVERAGE, IF, VLOOKUP).

4️⃣ VLOOKUP vs. INDEX/MATCH?
- VLOOKUP: Searches for a value in the first column and returns a corresponding value.
- INDEX/MATCH: More flexible and overcomes VLOOKUP limitations, better for larger datasets.

5️⃣ What are Pivot Tables?
Interactive tables that summarize and analyze large datasets, allowing you to easily rearrange and filter data.

6️⃣ Conditional Formatting?
Applies formatting (e.g., colors, icons) to cells based on specific criteria, making it easier to identify trends and outliers.

7️⃣ How to remove duplicates?
Use the "Remove Duplicates" feature in the Data tab to eliminate redundant rows based on selected columns.

8️⃣ What are Excel Charts?
Visual representations of data (e.g., bar charts, line charts, pie charts) that help communicate trends and insights.

9️⃣ How to protect a worksheet?
Use the "Protect Sheet" feature in the Review tab to prevent unauthorized changes to the worksheet structure and content.

🔟 What are Macros?
Automated sequences of commands that can be recorded and replayed to perform repetitive tasks efficiently.

👍 React ❤️ if you found this helpful!
2
📈 Want to Excel at Data Analytics? Master These Essential Skills! ☑️

Core Concepts:
• Statistics & Probability – Understand distributions, hypothesis testing
• Excel – Pivot tables, formulas, dashboards

Programming:
• Python – NumPy, Pandas, Matplotlib, Seaborn
• R – Data analysis & visualization
• SQL – Joins, filtering, aggregation

Data Cleaning & Wrangling:
• Handle missing values, duplicates
• Normalize and transform data

Visualization:
• Power BI, Tableau – Dashboards
• Plotly, Seaborn – Python visualizations
• Data Storytelling – Present insights clearly

Advanced Analytics:
• Regression, Classification, Clustering
• Time Series Forecasting
• A/B Testing & Hypothesis Testing

ETL & Automation:
• Web Scraping – BeautifulSoup, Scrapy
• APIs – Fetch and process real-world data
• Build ETL Pipelines

Tools & Deployment:
• Jupyter Notebook / Colab
• Git & GitHub
• Cloud Platforms – AWS, GCP, Azure
• Google BigQuery, Snowflake

Hope it helps :)
3
🚀 𝗦𝗼𝗳𝘁𝘄𝗮𝗿𝗲 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝗶𝗻𝗴 𝗪𝗶𝘁𝗵 𝗔𝗜 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗯𝘆 𝗜𝗜𝗧 𝗥𝗼𝗼𝗿𝗸𝗲𝗲 (𝗘&𝗜𝗖𝗧 𝗔𝗰𝗮𝗱𝗲𝗺𝘆)

Get guidance from IIT Roorkee experts and become job-ready for top tech roles.

Open to all graduates & students
Industry-focused curriculum
Online learning flexibility
Placement Assistance With 5000+ Companies

💼 Companies are hiring candidates with strong Software Engineering skills!

𝗥𝗲𝗴𝗶𝘀𝘁𝗿𝗮𝘁𝗶𝗼𝗻 𝗟𝗶𝗻𝗸👇

https://pdlink.in/4pYWCEK

Don’t miss this opportunity to upskill with IIT Roorkee.
Quick recap of essential SQL basics 😄👇

SQL is a domain-specific language used for managing and querying relational databases. It's crucial for interacting with databases, retrieving, storing, updating, and deleting data. Here are some fundamental SQL concepts:

1. Database
   - A database is a structured collection of data. It's organized into tables, and SQL is used to manage these tables.

2. Table
   - Tables are the core of a database. They consist of rows and columns, and each row represents a record, while each column represents a data attribute.

3. Query
   - A query is a request for data from a database. SQL queries are used to retrieve information from tables. The SELECT statement is commonly used for this purpose.

4. Data Types
   - SQL supports various data types (e.g., INTEGER, TEXT, DATE) to specify the kind of data that can be stored in a column.

5. Primary Key
   - A primary key is a unique identifier for each row in a table. It ensures that each row is distinct and can be used to establish relationships between tables.

6. Foreign Key
   - A foreign key is a column in one table that links to the primary key in another table. It creates relationships between tables in a database.

7. CRUD Operations
   - SQL provides four primary operations for data manipulation:
     - Create (INSERT) - Add new records to a table.
     - Read (SELECT) - Retrieve data from one or more tables.
     - Update (UPDATE) - Modify existing data.
     - Delete (DELETE) - Remove records from a table.

8. WHERE Clause
   - The WHERE clause is used in SELECT, UPDATE, and DELETE statements to filter and conditionally manipulate data.

9. JOIN
   - JOIN operations are used to combine data from two or more tables based on a related column. Common types include INNER JOIN, LEFT JOIN, and RIGHT JOIN.

10. Index
   - An index is a database structure that improves the speed of data retrieval operations. It's created on one or more columns in a table.

11. Aggregate Functions
   - SQL provides functions like SUM, AVG, COUNT, MAX, and MIN for performing calculations on groups of data.

12. Transactions
   - Transactions are sequences of one or more SQL statements treated as a single unit. They ensure data consistency by either applying all changes or none.

13. Normalization
   - Normalization is the process of organizing data in a database to minimize data redundancy and improve data integrity.

14. Constraints
   - Constraints (e.g., NOT NULL, UNIQUE, CHECK) are rules that define what data is allowed in a table, ensuring data quality and consistency.

Here is an amazing resources to learn & practice SQL: https://bit.ly/3FxxKPz

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
1
𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 & 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗣𝗿𝗼𝗴𝗿𝗮𝗺😍

Master in-demand tools like Python, SQL, Excel, Power BI, and Machine Learning while working on real-time projects.

🎯 Beginner to Advanced Level
💼 Placement Assistance with Top Hiring Partners
📁 Real-world Case Studies & Capstone Projects
📜 Industry-recognized Certification
💰 High Salary Career Path in Analytics & Data Science

𝗥𝗲𝗴𝗶𝘀𝘁𝗲𝗿 𝗡𝗼𝘄 👇:- 

 https://pdlink.in/4fdWxJB

( Hurry Up 🏃‍♂️Limited Slots )
Data Analytics Roadmap
|
|-- Fundamentals
|   |-- Mathematics
|   |   |-- Denoscriptive Statistics
|   |   |-- Inferential Statistics
|   |   |-- Probability Theory
|   |
|   |-- Programming
|   |   |-- Python (Focus on Libraries like Pandas, NumPy)
|   |   |-- R (For Statistical Analysis)
|   |   |-- SQL (For Data Extraction)
|
|-- Data Collection and Storage
|   |-- Data Sources
|   |   |-- APIs
|   |   |-- Web Scraping
|   |   |-- Databases
|   |
|   |-- Data Storage
|   |   |-- Relational Databases (MySQL, PostgreSQL)
|   |   |-- NoSQL Databases (MongoDB, Cassandra)
|   |   |-- Data Lakes and Warehousing (Snowflake, Redshift)
|
|-- Data Cleaning and Preparation
|   |-- Handling Missing Data
|   |-- Data Transformation
|   |-- Data Normalization and Standardization
|   |-- Outlier Detection
|
|-- Exploratory Data Analysis (EDA)
|   |-- Data Visualization Tools
|   |   |-- Matplotlib
|   |   |-- Seaborn
|   |   |-- ggplot2
|   |
|   |-- Identifying Trends and Patterns
|   |-- Correlation Analysis
|
|-- Advanced Analytics
|   |-- Predictive Analytics (Regression, Forecasting)
|   |-- Prenoscriptive Analytics (Optimization Models)
|   |-- Segmentation (Clustering Techniques)
|   |-- Sentiment Analysis (Text Data)
|
|-- Data Visualization and Reporting
|   |-- Visualization Tools
|   |   |-- Power BI
|   |   |-- Tableau
|   |   |-- Google Data Studio
|   |
|   |-- Dashboard Design
|   |-- Interactive Visualizations
|   |-- Storytelling with Data
|
|-- Business Intelligence (BI)
|   |-- KPI Design and Implementation
|   |-- Decision-Making Frameworks
|   |-- Industry-Specific Use Cases (Finance, Marketing, HR)
|
|-- Big Data Analytics
|   |-- Tools and Frameworks
|   |   |-- Hadoop
|   |   |-- Apache Spark
|   |
|   |-- Real-Time Data Processing
|   |-- Stream Analytics (Kafka, Flink)
|
|-- Domain Knowledge
|   |-- Industry Applications
|   |   |-- E-commerce
|   |   |-- Healthcare
|   |   |-- Supply Chain
|
|-- Ethical Data Usage
|   |-- Data Privacy Regulations (GDPR, CCPA)
|   |-- Bias Mitigation in Analysis
|   |-- Transparency in Reporting

Free Resources to learn Data Analytics skills👇👇

1. SQL

https://mode.com/sql-tutorial/introduction-to-sql

https://news.1rj.ru/str/sqlspecialist/738

2. Python

https://www.learnpython.org/

https://news.1rj.ru/str/pythondevelopersindia/873

https://bit.ly/3T7y4ta

https://www.geeksforgeeks.org/python-programming-language/learn-python-tutorial

3. R

https://datacamp.pxf.io/vPyB4L

4. Data Structures

https://leetcode.com/study-plan/data-structure/

https://www.udacity.com/course/data-structures-and-algorithms-in-python--ud513

5. Data Visualization

https://www.freecodecamp.org/learn/data-visualization/

https://news.1rj.ru/str/Data_Visual/2

https://www.tableau.com/learn/training/20223

https://www.workout-wednesday.com/power-bi-challenges/

6. Excel

https://excel-practice-online.com/

https://news.1rj.ru/str/excel_data

https://www.w3schools.com/EXCEL/index.php

Join @free4unow_backup for more free courses

Like for more ❤️

ENJOY LEARNING 👍👍
1
🚨 SQL Interview Challenge (Most Candidates Get This Wrong!)

Ques:

Can you write a query to find employees who earn more than the average salary of their own department?

👀 Sounds simple… but this is where many people slip.

Ans:

SELECT e.*
FROM employees e
JOIN (
SELECT department_id, AVG(salary) AS avg_salary
FROM employees
GROUP BY department_id
) d
ON e.department_id = d.department_id
WHERE e.salary > d.avg_salary;

📌 Why interviewers love this:

It tests your understanding of correlated logic, aggregation, and joins.

💡 Key insight:

The comparison is done within each department, not across the entire table.

👍 If this clarified a tricky concept, react with 👍🔥

📲 Follow this channel for more advanced, query-based SQL interview questions 🚀