Deep Gravity – Telegram
Deep Gravity
393 subscribers
60 photos
35 videos
17 files
495 links
AI

Contact:
DeepL.Gravity@gmail.com
Download Telegram
#Microsoft Research Webinar Series

Data Visualization: Bridging the Gap Between Users and Information

Link

🔭 @DeepGravity
Model Zoo
Discover open source deep learning code and pretrained models.

Link

🔭 @DeepGravity
A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns

Abstract
In cancer, the primary tumour’s organ of origin and histopathology are the strongest determinants of its clinical behaviour, but in 3% of cases a patient presents with a metastatic tumour and no obvious primary. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we train a deep learning classifier to predict cancer type based on patterns of somatic passenger mutations detected in whole genome sequencing (WGS) of 2606 tumours representing 24 common cancer types produced by the PCAWG Consortium. Our classifier achieves an accuracy of 91% on held-out tumor samples and 88% and 83% respectively on independent primary and metastatic samples, roughly double the accuracy of trained pathologists when presented with a metastatic tumour without knowledge of the primary. Surprisingly, adding information on driver mutations reduced accuracy. Our results have clinical applicability, underscore how patterns of somatic passenger mutations encode the state of the cell of origin, and can inform future strategies to detect the source of circulating tumour DNA.

Paper

🔭 @DeepGravity
#Position

Dear all,

Vivacity Labs, a fast-growing startup in London, is looking for a Machine Learning Researcher to work on using Reinforcement Learning for Traffic Signal Control. You would have extensive simulations & existing datasets to work with, and would be deploying your technology to live junctions in the UK from day 1.

For more details, please see:

https://angel.co/company/vivacity-labs/jobs/664275-machine-learning-researcher

Please feel free to apply directly to joinus@vivacitylabs.com with a CV and covering note.

Kind regards,
Mark

🔭 @DeepGravity
Stanford CS330: Deep Multi-Task and #MetaLearning

cs330.stanford.edu

Lecture Videos:
YouTube

🔭 @DeepGravity
Eastern European Machine Learning Summer School
6-11 July 2020, Krakow, Poland

Deep Learning and Reinforcement Learning

Link

🔭 @DeepGravity
Audio Data Analysis Using Deep Learning with Python (Part 1) (Part 2)

🔭 @DeepGravity
اگر با کراس کد زده باشید و اندازه کار بزرگ بوده باشه میدونید که یک سری محدودیت‌های خسته کننده برای
distributed training
وجود داره، البته که می‌شه مشکلات رو حل کرد اما خب زمانبر هست

توی تنسورفلو یک، ،submodule دیگری هم وجود داره به اسم estimator که توی نسخه ۲ توجه خوبی بهش شده و پیشرفتای خوبی داشته، حتی خیلی ریکامند می‌شه که موقع
Distributed Processing
بجای کراس ازین مورد استفاده بشه، ولی چون نوع syntax خودش رو داره برای کدهای بزرگ که روی کراس نوشته شده بنظر مفید نمیاد
اما :
tf.keras.estimator.model_to_estimator()
مشکل رو حل می‌کنه؛ توی تست‌های بنده اگر از خود کراس مستقیم استفاده کنید
pip install keras
و بخواید اینکارو انجام بدید مشکلاتی پیش میاد اما نسخه تنسورفلو ۲ به راحتی و عالی اینکارو انجام میده، دوم اینکه دیگه نیازی نیس یادتون بمونه که حتماً از
@tf.function
استفاده کنید، چون این مورد خوردش بهینه‌ساز‌ی‌هارو انجام میده، پردازش توزیع شده هم که دلیل اصلی استفاده هست
Statistical Modelling vs Machine Learning

At times it may seem Machine Learning can be done these days without a sound statistical background but those people are not really understanding the different nuances. Code written to make it easier does not negate the need for an in-depth understanding of the problem.

Link

🔭 @DeepGravity