Статья предлагает разобраться в устройстве Diffusion моделей, их математике и принципах работы. Автор делится простыми объяснениями, примерами кода и результатами генерации изображений на собственной модели.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3⚡3
Статья рассказывает, как с помощью нейросетей улучшить качество старых видеозаписей, включая VHS и DVD. Описываются инструменты, процесс и результаты с примерами, доступные каждому без глубоких технических знаний.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡5🔥4👎1
Напишите функцию, которая принимает две строки и проверяет, являются ли они анаграммами. Анаграммы — это слова, которые содержат одинаковые буквы в одинаковом количестве, но в разном порядке. Игнорируйте регистр и пробелы.
Пример:
result1 = are_anagrams("listen", "silent")
print(result1) # Ожидаемый результат: True
result2 = are_anagrams("hello", "world")
print(result2) # Ожидаемый результат: FalseРешение задачи
def are_anagrams(str1, str2):
# Удаляем пробелы и приводим к одному регистру
str1 = ''.join(str1.lower().split())
str2 = ''.join(str2.lower().split())
# Проверяем, равны ли отсортированные символы
return sorted(str1) == sorted(str2)
# Пример использования:
result1 = are_anagrams("listen", "silent")
print(result1) # Ожидаемый результат: True
result2 = are_anagrams("hello", "world")
print(result2) # Ожидаемый результат: False
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡2👍2
Статья представляет перевод работы о нейронных сетях на основе алгоритма Колмогорова-Арнольда (KAN). Рассматриваются новые исследования, связь с наукой и использование библиотеки pykan на Python для практических задач.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4⚡1👍1👎1
• «Снова упала?» Как поднять самооценку и зачем мы сравниваем себя с другими, даже если от этого больно
• Из учителя в QA: мой путь в IT
• Рынок дата-инженеров и прогноз на 2025
• Как сделать резюме, которое дойдёт до работодателя. Фильтры ATS в 2025 году
• Ошибайся смело: жизненные уроки из мира machine learning
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2⚡1
Статья объясняет, как нейросети помогают оптимизировать юнит-экономику продавцов на WB, особенно при работе с большим ассортиментом. Рассматриваются подходы к автоматизации анализа и принятию решений.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥3⚡1
Статья рассказывает об ИИ-трансформации Сбера, включая ключевые задачи, такие как стресс-тестирование, анализ рынков и прогнозирование эффективности сотрудников. Рассматривается использование ИИ до и после трансформации.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👎3❤2
Генераторы — это функции в Python, которые возвращают значения по одному с помощью ключевого слова
yield, вместо полного возврата всех значений сразу. Они полезны для работы с большими объемами данных, так как сохраняют память, генерируя значения на лету.# Генератор для получения первых N чисел Фибоначчи
def fibonacci(n):
a, b = 0, 1
for _ in range(n):
yield a
a, b = b, a + b
# Используем генератор
for num in fibonacci(5):
print(num)
# Вывод: 0, 1, 1, 2, 3
🗣️ В этом примере генератор fibonacci вычисляет числа по запросу, вместо сохранения всех значений в памяти. Это делает генераторы особенно удобными для работы с потоками данных или бесконечными последовательностями.
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡4❤2
История о том, как за 6 лет я написал двухтомник, посвящённый искусственному интеллекту и машинному обучению.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡4
Статья предлагает подборку инструментов, платформ и шаблонов для работы с языковыми моделями и создания ИИ-ассистентов. Рассматриваются протестированные в МТС решения, упрощающие разработку и интеграцию.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2⚡1👍1
Ты не обязан описывать каждую кнопку, каждый метод. Но ты обязан объяснить, как с этим жить.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍3
В этой статье я рассказываю про основные концепции, типы обучения, типы задач в машинном обучении и также делаю постановку задачи машинного обучения (МО). Все это я рассказываю в своем стиле и понимании.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡3❤1👍1🔥1
Статья объясняет различия между физически обоснованными моделями и моделями, основанными на данных, с примерами задач машинного обучения. Рассматривается подход к обработке данных, выбору моделей и их обучению.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5⚡1
Напишите функцию, которая принимает список положительных чисел и возвращает число с наибольшей суммой цифр. Если таких чисел несколько, вернуть первое из них.
Пример:
numbers = [123, 456, 789, 234]
result = max_digit_sum(numbers)
print(result)
# Ожидаемый результат: 789 (7+8+9=24, это максимальная сумма)
Решение задачи
def max_digit_sum(numbers):
def digit_sum(n):
return sum(int(digit) for digit in str(n))
return max(numbers, key=digit_sum)
# Пример использования:
numbers = [123, 456, 789, 234]
result = max_digit_sum(numbers)
print(result) # Ожидаемый результат: 789
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3⚡1
• Не бойтесь потоков в Python, они не кусаются
• Рубрика: VPS на пределе возможностей. LLM на CPU с 12Gb RAM
• Предвзятость русскоязычных LLM: кого машина считает «обычным человеком»?
• Семантический веб: краткий обзор технологий и инструментов
• Инструмент обеспечения качества данных: от теории к практике
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3⚡1
В этой статье я рассказываю про линейную регрессию, свойства, которыми должны обладать данные для модели, процесс обучения, регуляризацию, метрики качества. Кроме чистой теории я показываю как это все реализовать. Я рассказываю все в своем стиле и понимании - с инженерной точки зрения, с точки зрения того, как реализовывать с нуля.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5⚡3❤1
Напишите функцию, которая принимает
pandas.DataFrame и название столбца, а затем возвращает новый DataFrame, в котором выбросы (значения, выходящие за пределы 1.5 межквартильного размаха) удалены.Пример:
import pandas as pd
data = pd.DataFrame({
"values": [10, 12, 15, 100, 14, 13, 11, 102, 16]
})
cleaned_data = remove_outliers(data, "values")
print(cleaned_data)
# Ожидаемый результат:
# values
# 0 10
# 1 12
# 2 15
# 4 14
# 5 13
# 6 11
# 8 16
Решение задачи
import pandas as pd
def remove_outliers(df, column):
Q1 = df[column].quantile(0.25)
Q3 = df[column].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]
# Пример использования:
data = pd.DataFrame({
"values": [10, 12, 15, 100, 14, 13, 11, 102, 16]
})
cleaned_data = remove_outliers(data, "values")
print(cleaned_data)
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6⚡1
Статья рассказывает о новой AI-модели DeepSeek-R1-Lite, созданной для логических рассуждений. Рассматриваются её возможности, тестирование и перспективы применения в задачах анализа и вычислений.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3⚡1
Этот пост предназначен для абсолютных новичков и предполагает НУЛЕВЫЕ предварительные знания машинного обучения. Мы разберемся, как работают нейронные сети, и реализуем одну из них с нуля на Python.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4⚡1
shutil в Python и зачем он используется?Модуль
shutil предоставляет функции для работы с файлами и директориями, такие как копирование, перемещение и удаление. Он полезен для автоматизации задач управления файлами.import shutil
# Копирование файла
shutil.copy('source.txt', 'destination.txt')
# Перемещение файла
shutil.move('destination.txt', 'folder/destination.txt')
🗣️ В этом примере shutil.copy копирует файл, а shutil.move перемещает его в другую директорию. Это облегчает выполнение операций с файлами и папками.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5⚡1