Data Science | Machinelearning [ru] – Telegram
Data Science | Machinelearning [ru]
20K subscribers
637 photos
40 videos
29 files
3.52K links
Все о Data Science, машинном обучении и искусственном интеллекте: от базовой теории до cutting-edge исследований и LLM.

По вопросам рекламы или разработки - @g_abashkin

РКН: https://vk.cc/cJPGXD
Download Telegram
⚙️ Нейросетевой апскейлинг дома: вторая молодость для классических мультфильмов

Статья рассказывает, как с помощью нейросетей улучшить качество старых видеозаписей, включая VHS и DVD. Описываются инструменты, процесс и результаты с примерами, доступные каждому без глубоких технических знаний.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
5🔥4👎1
👩‍💻 Проверка, являются ли две строки анаграммами

Напишите функцию, которая принимает две строки и проверяет, являются ли они анаграммами. Анаграммы — это слова, которые содержат одинаковые буквы в одинаковом количестве, но в разном порядке. Игнорируйте регистр и пробелы.

Пример:

result1 = are_anagrams("listen", "silent")
print(result1) # Ожидаемый результат: True

result2 = are_anagrams("hello", "world")
print(result2) # Ожидаемый результат: False


Решение задачи🔽

def are_anagrams(str1, str2):
# Удаляем пробелы и приводим к одному регистру
str1 = ''.join(str1.lower().split())
str2 = ''.join(str2.lower().split())

# Проверяем, равны ли отсортированные символы
return sorted(str1) == sorted(str2)

# Пример использования:
result1 = are_anagrams("listen", "silent")
print(result1) # Ожидаемый результат: True

result2 = are_anagrams("hello", "world")
print(result2) # Ожидаемый результат: False
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍2
⚙️ KAN 2.0: Kolmogorov-Arnold Networks Meet Science

Статья представляет перевод работы о нейронных сетях на основе алгоритма Колмогорова-Арнольда (KAN). Рассматриваются новые исследования, связь с наукой и использование библиотеки pykan на Python для практических задач.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥41👍1👎1
🤖 Как удалить Excel навсегда: делегируем юнит-экономику на Wildberries нейронке

Статья объясняет, как нейросети помогают оптимизировать юнит-экономику продавцов на WB, особенно при работе с большим ассортиментом. Рассматриваются подходы к автоматизации анализа и принятию решений.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥31
💳 Как мы провели ИИ-трансформацию стратегических процессов Сбера

Статья рассказывает об ИИ-трансформации Сбера, включая ключевые задачи, такие как стресс-тестирование, анализ рынков и прогнозирование эффективности сотрудников. Рассматривается использование ИИ до и после трансформации.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👎32
⚙️ Что такое генераторы в Python и зачем они нужны?

Генераторы — это функции в Python, которые возвращают значения по одному с помощью ключевого слова yield, вместо полного возврата всех значений сразу. Они полезны для работы с большими объемами данных, так как сохраняют память, генерируя значения на лету.

➡️ Пример:

# Генератор для получения первых N чисел Фибоначчи
def fibonacci(n):
a, b = 0, 1
for _ in range(n):
yield a
a, b = b, a + b

# Используем генератор
for num in fibonacci(5):
print(num)

# Вывод: 0, 1, 1, 2, 3


🗣️ В этом примере генератор fibonacci вычисляет числа по запросу, вместо сохранения всех значений в памяти. Это делает генераторы особенно удобными для работы с потоками данных или бесконечными последовательностями.


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
42
📖 «Охота на электроовец: большая книга искусственного интеллекта» или как написать книгу про ИИ без регистрации и SMS

История о том, как за 6 лет я написал двухтомник, посвящённый искусственному интеллекту и машинному обучению.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
4
🤖 Псст, ИИ нужен? 5 полезных инструментов для разработчика

Статья предлагает подборку инструментов, платформ и шаблонов для работы с языковыми моделями и создания ИИ-ассистентов. Рассматриваются протестированные в МТС решения, упрощающие разработку и интеграцию.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
21👍1
📋 Документация — это не про "всё", а про "важное"

Ты не обязан описывать каждую кнопку, каждый метод. Но ты обязан объяснить, как с этим жить.

👉 Совет: документируй не детали, а маршруты: как запустить, как добавить фичу, как починить баг. Хорошая документация — это не энциклопедия, а инструкция к выживанию.
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍3
➡️ Машинное обучение: общие принципы и концепции

В этой статье я рассказываю про основные концепции, типы обучения, типы задач в машинном обучении и также делаю постановку задачи машинного обучения (МО). Все это я рассказываю в своем стиле и понимании.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
31👍1🔥1
⚙️ Physics-based и data-driven моделирование

Статья объясняет различия между физически обоснованными моделями и моделями, основанными на данных, с примерами задач машинного обучения. Рассматривается подход к обработке данных, выбору моделей и их обучению.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
51
👩‍💻 Поиск числа с максимальной суммой цифр

Напишите функцию, которая принимает список положительных чисел и возвращает число с наибольшей суммой цифр. Если таких чисел несколько, вернуть первое из них.

Пример:

numbers = [123, 456, 789, 234]
result = max_digit_sum(numbers)
print(result)
# Ожидаемый результат: 789 (7+8+9=24, это максимальная сумма)


Решение задачи🔽

def max_digit_sum(numbers):
def digit_sum(n):
return sum(int(digit) for digit in str(n))

return max(numbers, key=digit_sum)

# Пример использования:
numbers = [123, 456, 789, 234]
result = max_digit_sum(numbers)
print(result) # Ожидаемый результат: 789
Please open Telegram to view this post
VIEW IN TELEGRAM
31
➡️ Машинное обучение: Линейная регрессия. Теория и реализация. С нуля. На чистом Python

В этой статье я рассказываю про линейную регрессию, свойства, которыми должны обладать данные для модели, процесс обучения, регуляризацию, метрики качества. Кроме чистой теории я показываю как это все реализовать. Я рассказываю все в своем стиле и понимании - с инженерной точки зрения, с точки зрения того, как реализовывать с нуля.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍531
👩‍💻 Удаление выбросов из набора данных

Напишите функцию, которая принимает pandas.DataFrame и название столбца, а затем возвращает новый DataFrame, в котором выбросы (значения, выходящие за пределы 1.5 межквартильного размаха) удалены.

Пример:

import pandas as pd

data = pd.DataFrame({
"values": [10, 12, 15, 100, 14, 13, 11, 102, 16]
})

cleaned_data = remove_outliers(data, "values")
print(cleaned_data)
# Ожидаемый результат:
# values
# 0 10
# 1 12
# 2 15
# 4 14
# 5 13
# 6 11
# 8 16


Решение задачи🔽

import pandas as pd

def remove_outliers(df, column):
Q1 = df[column].quantile(0.25)
Q3 = df[column].quantile(0.75)
IQR = Q3 - Q1

lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR

return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]

# Пример использования:
data = pd.DataFrame({
"values": [10, 12, 15, 100, 14, 13, 11, 102, 16]
})

cleaned_data = remove_outliers(data, "values")
print(cleaned_data)
Please open Telegram to view this post
VIEW IN TELEGRAM
61
➡️ DeepSeek AI: От инъекции промпта до захвата аккаунта

Статья рассказывает о новой AI-модели DeepSeek-R1-Lite, созданной для логических рассуждений. Рассматриваются её возможности, тестирование и перспективы применения в задачах анализа и вычислений.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
31
Машинное обучение для начинающих: Введение в нейронные сети

Этот пост предназначен для абсолютных новичков и предполагает НУЛЕВЫЕ предварительные знания машинного обучения. Мы разберемся, как работают нейронные сети, и реализуем одну из них с нуля на Python.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
41
⚙️ Что такое модуль shutil в Python и зачем он используется?

Модуль shutil предоставляет функции для работы с файлами и директориями, такие как копирование, перемещение и удаление. Он полезен для автоматизации задач управления файлами.

➡️ Пример:

import shutil

# Копирование файла
shutil.copy('source.txt', 'destination.txt')

# Перемещение файла
shutil.move('destination.txt', 'folder/destination.txt')


🗣️ В этом примере shutil.copy копирует файл, а shutil.move перемещает его в другую директорию. Это облегчает выполнение операций с файлами и папками.


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
51
🤖 Как мы сделали клиентскую поддержку интернет-магазина действительно умной: опыт внедрения RAG-бота

Статья описывает разработку «умного» помощника для клиентской поддержки интернет-магазина. Рассматриваются проблемы, с которыми сталкивался клиент, и пути их решения с помощью ИИ.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍52