Редкое событие на нашем рынке игровой аналитики — открытая позиция на джуна. Saber, конечно, любопытная с этой точки зрения контора. Насколько я знаю, они не только заниматся аутсорсом, но у них есть и свои мобильные игры.
Требования не совсем джуновские, конечно. С другой стороны, и требования знать особенности игровой аналитики тоже нет, чего обычно уже ждешь от миддлов и выше.
Требования не совсем джуновские, конечно. С другой стороны, и требования знать особенности игровой аналитики тоже нет, чего обычно уже ждешь от миддлов и выше.
Наконец-то добрался до статьи Илкки Паананена (гендир Supercell) о состоянии студии. Пересказ здесь, оригинал здесь.
Мне больше всего была интересна стратегическая часть — что и как делать дальше. Из наиболее важного — Supercell стремится к тому, чтобы делать хиты с большим вкладом в культуру, культурные феномены. Желание понятное, закономерное и амбициозное, конечно. При этом вполне подкрепленное, на мой взгляд, прагматическими соображениями: при разработке игр-середнячков соотношение прибыли и затрат на разработку может не удовлетворять бизнес-целям, да и сама разработка таких игр будет оттягивать ресурсы и тем самым уменьшать шанс создания хита. Однако разрабатывать хиты они собираются полагаясь на чутье команд разработки. И вот этот момент меня смущает, я немножко скептично отношусь к визионерским стратегиям. Особенно зная, сколько на самом деле маеты с метой и экономикой. При этом работа с данными не отвергается, но веры в то, что "following the data will lead to outlier successes" мало. И вот это уже интересно. Видимо, до недавного времени соблюдавшийся принцип "нанимаем людей с 10+ лет опыта в индустрии" дает какие-то дополнительные эффекты.
Второй момент, на который я обратил внимание — есть стремление создавать инновационные продукты, а не просто улучшать успешные игры других компаний. Это ведь уже даже не growth hacking. И требует, ко всему прочему, отработанных и эффективных практик креативного мышления. Я какое-то время назад думал над этим, но ни до чего серьезного кроме брейнштормов с гд по типу "скрести ужа с ежом и придумай к этому монетизацию" не дошел, потому что во всем своем далеком академическом прошлом темы креативности и мышления я обходил по очень большой дуге.
Вообще, по словам Паананена, Supercell создали пять хитов и закрыли около 30 игр. Я почему-то думал, что закрытых проектов будет больше. И теперь я в задумчивости, как же у них на самом деле построен процесс поиска концептов, экспериментирования и тестирования прототипов.
Мне больше всего была интересна стратегическая часть — что и как делать дальше. Из наиболее важного — Supercell стремится к тому, чтобы делать хиты с большим вкладом в культуру, культурные феномены. Желание понятное, закономерное и амбициозное, конечно. При этом вполне подкрепленное, на мой взгляд, прагматическими соображениями: при разработке игр-середнячков соотношение прибыли и затрат на разработку может не удовлетворять бизнес-целям, да и сама разработка таких игр будет оттягивать ресурсы и тем самым уменьшать шанс создания хита. Однако разрабатывать хиты они собираются полагаясь на чутье команд разработки. И вот этот момент меня смущает, я немножко скептично отношусь к визионерским стратегиям. Особенно зная, сколько на самом деле маеты с метой и экономикой. При этом работа с данными не отвергается, но веры в то, что "following the data will lead to outlier successes" мало. И вот это уже интересно. Видимо, до недавного времени соблюдавшийся принцип "нанимаем людей с 10+ лет опыта в индустрии" дает какие-то дополнительные эффекты.
Второй момент, на который я обратил внимание — есть стремление создавать инновационные продукты, а не просто улучшать успешные игры других компаний. Это ведь уже даже не growth hacking. И требует, ко всему прочему, отработанных и эффективных практик креативного мышления. Я какое-то время назад думал над этим, но ни до чего серьезного кроме брейнштормов с гд по типу "скрести ужа с ежом и придумай к этому монетизацию" не дошел, потому что во всем своем далеком академическом прошлом темы креативности и мышления я обходил по очень большой дуге.
Вообще, по словам Паананена, Supercell создали пять хитов и закрыли около 30 игр. Я почему-то думал, что закрытых проектов будет больше. И теперь я в задумчивости, как же у них на самом деле построен процесс поиска концептов, экспериментирования и тестирования прототипов.
🔥3
В очередном раунде скрининга новых игр мне достался Happy Hospital от гонконгских DragonPlus Game. Ничто не предвещало беды. Но это оказался тайм-менеджер (@yanapriestley, ты вроде любишь такое).
Поток пациентов, лимит на койки, врачей разных специальностей, несколько этапов лечения, одна медсестра, которая разносит лекарства, звезды на облагораживание госпиталя в Playrix-style...Тайм-менеджер. В целом сделано добротно, аж зависть берет. Мета развесистая, игра затягивает, сложность растет волнами и постепенно увеличивается. Как будто игра не осенью прошлого года вышла.
Никогда не понимал тайм-менеджеры. В Grand Hotel Mania меня хватило минут на десять. Надеюсь, ребята из Appmagic когда-нибудь сделают обзор и на этот жанр. Мы, конечно, посмотрим сами некоторые рыночные метрики, но это не совсем то.
Естественно, профдеформация тоже проявилась. Стал попутно думать, что и как я бы логировал. Какие были бы ключевые продуктовые метрики. Голова заболела, серьезно. После шутеров это какой-то совсем другой мир, кажется. Фермы и мерджи и то проще.
Поток пациентов, лимит на койки, врачей разных специальностей, несколько этапов лечения, одна медсестра, которая разносит лекарства, звезды на облагораживание госпиталя в Playrix-style...Тайм-менеджер. В целом сделано добротно, аж зависть берет. Мета развесистая, игра затягивает, сложность растет волнами и постепенно увеличивается. Как будто игра не осенью прошлого года вышла.
Никогда не понимал тайм-менеджеры. В Grand Hotel Mania меня хватило минут на десять. Надеюсь, ребята из Appmagic когда-нибудь сделают обзор и на этот жанр. Мы, конечно, посмотрим сами некоторые рыночные метрики, но это не совсем то.
Естественно, профдеформация тоже проявилась. Стал попутно думать, что и как я бы логировал. Какие были бы ключевые продуктовые метрики. Голова заболела, серьезно. После шутеров это какой-то совсем другой мир, кажется. Фермы и мерджи и то проще.
👍3❤1
Сегодня был деактивирован слак ODS. Кончилась эпоха в жизни русскоязычного сообщества датасаентистов. И, в какой-то мере, страница моей личной истории.
Я был в ODS с самых первых месяцев и вплоть до сегодняшнего дня числился админом. На самом деле у меня были скорее модераторско-технические функции — разбирал заявки, немножко волонтерил на датафестах, тормозил и чистил срачи, отвечал на жалобы и так далее. Естественно, было очень много личных контактов и общения, это был круг если не друзей, то очень хороших знакомых.
В жизни сообщества я активно участвовал примерно до 2018-2019 годов, потом стал все больше и больше отходить и в последнее время эпизодически присматривал за вымершим каналом #lang_r и чуть более активным #analytics.
Одна из причин моего ухода была в том, что я чем дальше, тем больше осознавал, что я не датасатанист. Помню, на какой-то из встреч, когда меня спросили, чем я занимаюсь, я ответил что-то вроде “анализирую по логам поведение пользователей”. Я тогда еще работал в Консультант+ и слов “продуктовая аналитика”, кажется, никто не знал, уж я точно.
Сейчас продуктовой аналитикой никого не удивишь, связность сообщества нарушена, но не потеряна. А я все больше в своей работе делаю акцент на поведении пользователей, чем на анализе.
Я был в ODS с самых первых месяцев и вплоть до сегодняшнего дня числился админом. На самом деле у меня были скорее модераторско-технические функции — разбирал заявки, немножко волонтерил на датафестах, тормозил и чистил срачи, отвечал на жалобы и так далее. Естественно, было очень много личных контактов и общения, это был круг если не друзей, то очень хороших знакомых.
В жизни сообщества я активно участвовал примерно до 2018-2019 годов, потом стал все больше и больше отходить и в последнее время эпизодически присматривал за вымершим каналом #lang_r и чуть более активным #analytics.
Одна из причин моего ухода была в том, что я чем дальше, тем больше осознавал, что я не датасатанист. Помню, на какой-то из встреч, когда меня спросили, чем я занимаюсь, я ответил что-то вроде “анализирую по логам поведение пользователей”. Я тогда еще работал в Консультант+ и слов “продуктовая аналитика”, кажется, никто не знал, уж я точно.
Сейчас продуктовой аналитикой никого не удивишь, связность сообщества нарушена, но не потеряна. А я все больше в своей работе делаю акцент на поведении пользователей, чем на анализе.
😢7❤6
В чате игровых аналитиков сегодня весь день обсуждаем нейронки для выдачи офферов (и в целом системы рекомендаций). Одна мысль мне показалась весьма интересной, процитирую здесь:
Одно из неожиданных для меня открытий, которое мы сделали при внедрении системы офферов - пользователю нельзя всегда показывать хорошие предложения. Наоборот, надо показывать обычно плохие, чтобы, увидев хороший, он его купил. И поэтому мы специально модифицировали систему, чтобы она показывала разные предложения. И в этом смысле простой рандом вообще то очень неплохо работает.
В монетизации, построенной на офферах, мы по умолчанию предполагаем, что цены за инапы в магазине (банке) — это своего рода бейслайн, относительно которого пользователи и определяют выгоду оффера. Однако меня всегда смущала мысль, что пользователи могут вообще не заходить в банк и закупаться сугубо по офферам, в результате у них нет сравнения. И в таком смысле неинтересные / невыгодные офферы как раз могут задавать более наглядный бейслайн. А попутно — показывать вариативность предложений, заставлять пользователей сравнивать и, в результате, формировать осознание ценности оффера.
Единственный минус всей идеи — пользователи не резиновые и количество офферов, которое им можно показать в единицу времени, ограничено. А план по выручке никто не отменяет. Но это все можно проверять аб-тестами, как и эффективность полностью случайного набора офферов.
Одно из неожиданных для меня открытий, которое мы сделали при внедрении системы офферов - пользователю нельзя всегда показывать хорошие предложения. Наоборот, надо показывать обычно плохие, чтобы, увидев хороший, он его купил. И поэтому мы специально модифицировали систему, чтобы она показывала разные предложения. И в этом смысле простой рандом вообще то очень неплохо работает.
В монетизации, построенной на офферах, мы по умолчанию предполагаем, что цены за инапы в магазине (банке) — это своего рода бейслайн, относительно которого пользователи и определяют выгоду оффера. Однако меня всегда смущала мысль, что пользователи могут вообще не заходить в банк и закупаться сугубо по офферам, в результате у них нет сравнения. И в таком смысле неинтересные / невыгодные офферы как раз могут задавать более наглядный бейслайн. А попутно — показывать вариативность предложений, заставлять пользователей сравнивать и, в результате, формировать осознание ценности оффера.
Единственный минус всей идеи — пользователи не резиновые и количество офферов, которое им можно показать в единицу времени, ограничено. А план по выручке никто не отменяет. Но это все можно проверять аб-тестами, как и эффективность полностью случайного набора офферов.
🔥13
Читаю отчет SensorTower (пересказ и файл отчета здесь и здесь). Достаточно много любопытного, например “Hybridcasual Is the New Casual” и My little Universe, в которую я залипал одно время. Меня заинтересовало другое наблюдение:
Players of mobile games featuring both Character Collection and Social Clans metas tend to spend more time in the game.
Притом страницей раньше показано, что топ игр по гроссу (все — мидкор) как раз имеют коллекционирование и/или кланы. А некоторые, типа Genshin Impact — сильную нарративную часть.
Попутно вспомнил, что пользователи в одном из наших опросов говорили, что лидерборды им не очень интересны. А также постоянное нытье пользователей “когда будут друзья/кланы в игре”, которое обычно игнорируется. И успех Among Us.
Все это приводит меня к осторожным мыслям, что социальные и кооперативные фичи становятся все более и более значимыми, вместо нагибания и соревновательности. Или соревнование переходит в том числе в коллекции. Что приводит уже к совсем крамоле вида “продавать power в мидкоре через некоторое время может быть уже не очень эффективно.”
Players of mobile games featuring both Character Collection and Social Clans metas tend to spend more time in the game.
Притом страницей раньше показано, что топ игр по гроссу (все — мидкор) как раз имеют коллекционирование и/или кланы. А некоторые, типа Genshin Impact — сильную нарративную часть.
Попутно вспомнил, что пользователи в одном из наших опросов говорили, что лидерборды им не очень интересны. А также постоянное нытье пользователей “когда будут друзья/кланы в игре”, которое обычно игнорируется. И успех Among Us.
Все это приводит меня к осторожным мыслям, что социальные и кооперативные фичи становятся все более и более значимыми, вместо нагибания и соревновательности. Или соревнование переходит в том числе в коллекции. Что приводит уже к совсем крамоле вида “продавать power в мидкоре через некоторое время может быть уже не очень эффективно.”
❤9
На выходных перечитал “Игру в цифры”. Впечатления, признаться, очень смешанные. С одной стороны, текст достаточно легкий, есть разные интересные наблюдения из отчетов или практики. С другой — на мой вкус, не очень выдержанный текст, сборная солянка всего “на тему”, по верхам, от отчетов десятилетней давности до демонстрации расчета метрик в экселе или описания, в каком порядке по стоимости могут быть инапы в банке.
Впрочем, почитать что-то от человека из индустрии всегда интересно. А то, как я регулярно говорю, аналитики в массе своей тихушники и нигде не светятся. Однако Василий Сабиров в введении пишет, что его главной задачей было “рассказать доступно и просто о том, как работает и для чего нужна игровая аналитика”. И, на мой взгляд, именно этой цели удалось достигнуть лишь частично.
Лично мне очень не хватило описания, как принимаются продуктовые решения, как в них участвует аналитика. В конце концов, посчитать метрики — не самая сложная часть анализа. Когда читал, в голове крутилась фраза-мем родом из GI, за авторством лида одной из студий — “надо просто увеличить ARPU”. То есть, недостаточно сказать, что какая-то метрика низкая/высокая. Надо понять, какие есть рычаги по ее изменению. И это, на мой взгляд, одна из самых сложных частей продуктовой аналитики.
Также мне не хватило некоторой продуктовой/поведенческой интерпретации метрик. Например, что рет1 мы обычно интерпретируем как заинтересованность в геймплее, а поздние дни — заинтересованность в мете. Что софт-валюта служит измерением опыта пользователя в игре, а хард-валюта — прокси к времени пользователя, которое он готов тратить. И так далее. Понимание и проговаривание подобных вещей, на мой взгляд, делает исследования более глубокими и осмысленными и как раз дает направление для изменений.
#books
Впрочем, почитать что-то от человека из индустрии всегда интересно. А то, как я регулярно говорю, аналитики в массе своей тихушники и нигде не светятся. Однако Василий Сабиров в введении пишет, что его главной задачей было “рассказать доступно и просто о том, как работает и для чего нужна игровая аналитика”. И, на мой взгляд, именно этой цели удалось достигнуть лишь частично.
Лично мне очень не хватило описания, как принимаются продуктовые решения, как в них участвует аналитика. В конце концов, посчитать метрики — не самая сложная часть анализа. Когда читал, в голове крутилась фраза-мем родом из GI, за авторством лида одной из студий — “надо просто увеличить ARPU”. То есть, недостаточно сказать, что какая-то метрика низкая/высокая. Надо понять, какие есть рычаги по ее изменению. И это, на мой взгляд, одна из самых сложных частей продуктовой аналитики.
Также мне не хватило некоторой продуктовой/поведенческой интерпретации метрик. Например, что рет1 мы обычно интерпретируем как заинтересованность в геймплее, а поздние дни — заинтересованность в мете. Что софт-валюта служит измерением опыта пользователя в игре, а хард-валюта — прокси к времени пользователя, которое он готов тратить. И так далее. Понимание и проговаривание подобных вещей, на мой взгляд, делает исследования более глубокими и осмысленными и как раз дает направление для изменений.
#books
❤9👍5
30 мая будет конференция Aha’23. Ее делает Алексей Никушин и его команда МатеМаркетинга. Программа неполная, но общее представление дает.
Из того, что я вижу — конференция получилась преимущественно про A/B-тесты, притом большинство докладчиков из Avito и Яндекса. На мой взгляд в геймдеве большая часть их опыта либо нерелевантна, либо не очень применима, однако послушать все же стоит. В первую очередь про проблемы и процессы.
Есть еще несколько докладов про ценообразование и оптимизацию скидок, и вот для меня они сейчас интереснее всего. Я чем дальше, тем больше думаю про ценообразование в условиях, когда реальную стоимость пользователь оценить не может, хочется немного поэкспериментировать. Офферы, куда ж без них.
Из того, что я вижу — конференция получилась преимущественно про A/B-тесты, притом большинство докладчиков из Avito и Яндекса. На мой взгляд в геймдеве большая часть их опыта либо нерелевантна, либо не очень применима, однако послушать все же стоит. В первую очередь про проблемы и процессы.
Есть еще несколько докладов про ценообразование и оптимизацию скидок, и вот для меня они сейчас интереснее всего. Я чем дальше, тем больше думаю про ценообразование в условиях, когда реальную стоимость пользователь оценить не может, хочется немного поэкспериментировать. Офферы, куда ж без них.
Вчера забрел на локальный геймдев-митап, поговорил про продуктовое мышление. Получилось вполне мило. А в кулуарном обсуждении услышал про себя “сразу видно опытного барыгу дофамином”.
Вообще, рад, что выбрался — чуток социализировался да вспомнил, как говорить на незнакомую аудиторию. Попутно сам для себя сформулировал ряд теоретических идей-тезисов про аналитику. Почему-то мне всегда лучше думается, когда надо кому-то что-то рассказать.
На самом деле мой доклад мне не особо нравится, он не согласован по блокам, а ключевые мысли слабо раскрыты. Да и в целом много личной картины мира, а аналитики в геймдеве обычно более приземленные ребята.
Записи митапа не было, но если кому интересно — вот тут текст моего выступления.
Вообще, рад, что выбрался — чуток социализировался да вспомнил, как говорить на незнакомую аудиторию. Попутно сам для себя сформулировал ряд теоретических идей-тезисов про аналитику. Почему-то мне всегда лучше думается, когда надо кому-то что-то рассказать.
На самом деле мой доклад мне не особо нравится, он не согласован по блокам, а ключевые мысли слабо раскрыты. Да и в целом много личной картины мира, а аналитики в геймдеве обычно более приземленные ребята.
Записи митапа не было, но если кому интересно — вот тут текст моего выступления.
🔥14❤3👍1
В последние дни на канал пришло достаточно много людей из сферы UX/СХ и продуктовых исследований. Потому, кажется, стоит хотя бы верхнеуровнево рассказать, что такое продуктовая аналитика в геймдеве (точнее, как я ее вижу), и как мы взаимодействуем с UX-задачами.
Первое и ключевое. Фокус продуктовых аналитиков на бизнес-задачах, а не на пользователе. Мы оцениваем внутри-игровую экономику и балансы, эффективность систем персональных предложений и скидок, как новые фичи влияют на метрики и т. д. То есть мы помогаем командам оперирования (продюсеру, геймдизайнерам, менеджерам монетизации) принимать решения по развитию продукта.
Второе — мы работаем с логами пользователей, с наблюдаемыми поведенческими актами. Как часто заходят, сколько играют, сколько сессий в день делают, что делают во время игры — прогрессия по уровням, количество и статистика по боям (если шутеры), выполненные квесты (в казуалках) и проч. Аналитики продумывают, что и как надо залогировать и ставят задачи командам разработки.
Основа нашей работы — мы проверяем гипотезы, почему у нас такие метрики, опираясь на то, что (не)сделал пользователь в игре. Это требует хорошего понимания того, как сконструирована игра и как может быть связано поведение пользователей в игре с нашими показателями.
Пример: “Видим, что в уровневой группе 10-20 увеличена доля отвалов”. Наша гипотеза — пользователю скучно. Операционализируем “скучно” как малое количество значимых событий (левелап, получение нового контента и т. д.) на единицу времени. Смотрим, как связана “скучность” с отвалами. Проверяем альтернативные гипотезы (например, резко выросла сложность и пользователи чаще проигрывают). Пишем рекомендации геймдизайнерам.
Про UX в следующем посте.
Первое и ключевое. Фокус продуктовых аналитиков на бизнес-задачах, а не на пользователе. Мы оцениваем внутри-игровую экономику и балансы, эффективность систем персональных предложений и скидок, как новые фичи влияют на метрики и т. д. То есть мы помогаем командам оперирования (продюсеру, геймдизайнерам, менеджерам монетизации) принимать решения по развитию продукта.
Второе — мы работаем с логами пользователей, с наблюдаемыми поведенческими актами. Как часто заходят, сколько играют, сколько сессий в день делают, что делают во время игры — прогрессия по уровням, количество и статистика по боям (если шутеры), выполненные квесты (в казуалках) и проч. Аналитики продумывают, что и как надо залогировать и ставят задачи командам разработки.
Основа нашей работы — мы проверяем гипотезы, почему у нас такие метрики, опираясь на то, что (не)сделал пользователь в игре. Это требует хорошего понимания того, как сконструирована игра и как может быть связано поведение пользователей в игре с нашими показателями.
Пример: “Видим, что в уровневой группе 10-20 увеличена доля отвалов”. Наша гипотеза — пользователю скучно. Операционализируем “скучно” как малое количество значимых событий (левелап, получение нового контента и т. д.) на единицу времени. Смотрим, как связана “скучность” с отвалами. Проверяем альтернативные гипотезы (например, резко выросла сложность и пользователи чаще проигрывают). Пишем рекомендации геймдизайнерам.
Про UX в следующем посте.
❤17👍12
Продолжая тему UX-исследований глазами аналитика. Как я уже говорил, продуктовая аналитика основана в первую очередь на данных о наблюдаемом поведении пользователей. Мы редко проводим исследования, которые предполагают какое-то активное взаимодействие с пользователями и интерес к его опыту, хотя их ценность не отрицается. (Я сейчас про f2p/GaaS, в pay-to-play другая атмосфера).
Причин этому, на мой взгляд, несколько. В частности это необходимость достаточно дорогой инфраструктуры (исследователи, рекрут) и не очень высокая скорость получения информации. Также для большинства задач бывает достаточно логов и опыта продуктовых аналитиков. И, в конце концов, подобные исследования редко дают сильный рычаг влияния на метрики.
Чаще всего проводят опросы пользователей — оценки фич релиза (в том числе и технические проблемы), узнаваемость бренда, интересы аудитории (для идей коллабов) и тому подобное. В редких случаях спрашиваем суперкитов, что они думают о последних изменениях. Опросы обычно проводят саппорт, коммьюнити-менеджеры, иногда аналитики. Если есть какие-то отделы маркетинга (не UA), то еще и они.
Второе направление исследований — (не)модерируемые плейтесты. И я в данном случае не про внутренние или friends&family плейтесты, а тесты на внешней набранной по критериям выборке. Такие плейтесты обычно используются при оценке прототипов (@Maria_DW наш рулевой), когда только обкатываем те или иные идеи, или не можем придумать проверяемые на логах гипотезы. Такие исследования делают UX-исследователи или отдаются на аутсорс, у продуктовых аналитиков фокус и навыки совсем другие.
Юзабилити-тесты как таковые отдельно практически не проводятся, потому что для них обычно хватает внутренних плейтестов на сотрудниках — все они активные геймеры с разнообразным опытом и насмотренностью.
В целом, результаты UX-исследований редко выступают единственным основанием для принятия решений. Обычно это лишь один из источников материалов для размышлений, которые все равно потом проверяются на выборке.
Причин этому, на мой взгляд, несколько. В частности это необходимость достаточно дорогой инфраструктуры (исследователи, рекрут) и не очень высокая скорость получения информации. Также для большинства задач бывает достаточно логов и опыта продуктовых аналитиков. И, в конце концов, подобные исследования редко дают сильный рычаг влияния на метрики.
Чаще всего проводят опросы пользователей — оценки фич релиза (в том числе и технические проблемы), узнаваемость бренда, интересы аудитории (для идей коллабов) и тому подобное. В редких случаях спрашиваем суперкитов, что они думают о последних изменениях. Опросы обычно проводят саппорт, коммьюнити-менеджеры, иногда аналитики. Если есть какие-то отделы маркетинга (не UA), то еще и они.
Второе направление исследований — (не)модерируемые плейтесты. И я в данном случае не про внутренние или friends&family плейтесты, а тесты на внешней набранной по критериям выборке. Такие плейтесты обычно используются при оценке прототипов (@Maria_DW наш рулевой), когда только обкатываем те или иные идеи, или не можем придумать проверяемые на логах гипотезы. Такие исследования делают UX-исследователи или отдаются на аутсорс, у продуктовых аналитиков фокус и навыки совсем другие.
Юзабилити-тесты как таковые отдельно практически не проводятся, потому что для них обычно хватает внутренних плейтестов на сотрудниках — все они активные геймеры с разнообразным опытом и насмотренностью.
В целом, результаты UX-исследований редко выступают единственным основанием для принятия решений. Обычно это лишь один из источников материалов для размышлений, которые все равно потом проверяются на выборке.
👍9👎3❤1
Пилим с ребятами прототипы. И в какой-то момент оказались в ситуации “на третий день индеец Зоркий Глаз заметил, что в тюрьме всего три стены”. В смысле, осознали, что оценивать прототип по удержанию первого дня можно, но для понимания “почему так” — недостаточно.
Ретеншен метрика инертная и малоинформативная. Поэтому с головой нырнули в FTUE (first time user experience), чем ранее не особо увлекались — в немалой части потому что воронки боев как прокси к ретеншену вполне хватало, а мороки с выделением сессий много. Притом конкретные вещи типа багов или “экономических самоубийств / дедлоков” (когда тратишь ресурсы не на то, что надо, и потом даже нагриндить не можешь) тут не так интересны, хочется выловить концептуальное, понравилась пользователю игра или нет.
Пока балуюсь с временем первой сессии и ее насыщенностью / общим временем и его структурой в день инсталла. Попутно тестирую heartbit-событие, когда приложение каждые N секунд отправляет состояние пользователя (аналогично user_engagement в Firebase). В первую очередь пытаюсь понять, насколько оно информативно и полезно может быть.
К слову, вот древняя, но достаточно интересная статья на тему первых десяти минут: Why the first ten minutes are crucial if you want to keep players coming back
Ретеншен метрика инертная и малоинформативная. Поэтому с головой нырнули в FTUE (first time user experience), чем ранее не особо увлекались — в немалой части потому что воронки боев как прокси к ретеншену вполне хватало, а мороки с выделением сессий много. Притом конкретные вещи типа багов или “экономических самоубийств / дедлоков” (когда тратишь ресурсы не на то, что надо, и потом даже нагриндить не можешь) тут не так интересны, хочется выловить концептуальное, понравилась пользователю игра или нет.
Пока балуюсь с временем первой сессии и ее насыщенностью / общим временем и его структурой в день инсталла. Попутно тестирую heartbit-событие, когда приложение каждые N секунд отправляет состояние пользователя (аналогично user_engagement в Firebase). В первую очередь пытаюсь понять, насколько оно информативно и полезно может быть.
К слову, вот древняя, но достаточно интересная статья на тему первых десяти минут: Why the first ten minutes are crucial if you want to keep players coming back
👍7❤2
Обнаружил, что у Appsflyer есть что-то вроде среза базовых метрик по разным жанрам. Несколько лет назад подобные отчеты делали GameAnalytics. Однако их последний отчет был в 2019 году и с тех пор много воды утекло.
Интереснее всего, конечно же, ретеншен. Хотя есть и другие метрики, запросы на которые я также слышал в последнее время — CPI, уровень фрода, конверсии в платящего за 30 дней и т.д.
Интереснее всего, конечно же, ретеншен. Хотя есть и другие метрики, запросы на которые я также слышал в последнее время — CPI, уровень фрода, конверсии в платящего за 30 дней и т.д.
Недавно во время одного из рабочих созвонов сформулировал ряд сомнений про офферы и концепции их формирования.
Допустим, у вас вся экономика и лайвопс стоят на офферах (предложениях купить со скидкой контент / ресурсы и т. д.). А покупки в банке если кто и делает, то это незначительная доля в структуре платежей (в отличие от тех же *scapes от Playrix, где, насколько я помню, преимущественно покупки харды в банке).
Я знаю две системы, какие офферы и когда мы показываем пользователю. Первая — триггерная. То есть у пользователя разлочился новый контент, и мы даем ему оффер с ним. Или пользователь проиграл / потратил энергию и мы даем ему в этом месте оффер. Эти офферы предполагают немедленную яркую потребность пользователя в контенте или ресурсах.
Вторая система — когда мы формируем и показываем какой-то набор предложений исходя из нашего представления о структуре аудитории, размерах скидок, модели дистрибуции контента и тому подобное. Условно, “надо показать оффер на $4.99, сейчас посмотрим, что в нем можно продать и с какой скидкой”. Насколько я понимаю, многие старые проекты рано или поздно приходят к такой модели, так как это позволяет лучше планировать и достигать поставленные цели по выручке.
Так вот. У меня есть подозрение, что на старте игры пользователю выгоднее показывать триггерные офферы, а персональные офферы — больше важны на поздних этапах, когда пользователи могут оценивать выгодность оффера и планировать долгосрочно. Но я не знаю, как можно это относительно легко проверить.
Также очень хочется скрестить обе модели. То есть давать оффер на необходимую сумму, но продавать в нем то, что пользователю нужно в этот момент. Или как сделать плавный переход от одной системы к другой. И тут тоже у меня нет какого-то простого и изящного решения, не знаю, как это можно хорошо сделать.
Если у вас есть примеры других систем офферов или опыт их оптимизации — расскажите, пожалуйста.
Допустим, у вас вся экономика и лайвопс стоят на офферах (предложениях купить со скидкой контент / ресурсы и т. д.). А покупки в банке если кто и делает, то это незначительная доля в структуре платежей (в отличие от тех же *scapes от Playrix, где, насколько я помню, преимущественно покупки харды в банке).
Я знаю две системы, какие офферы и когда мы показываем пользователю. Первая — триггерная. То есть у пользователя разлочился новый контент, и мы даем ему оффер с ним. Или пользователь проиграл / потратил энергию и мы даем ему в этом месте оффер. Эти офферы предполагают немедленную яркую потребность пользователя в контенте или ресурсах.
Вторая система — когда мы формируем и показываем какой-то набор предложений исходя из нашего представления о структуре аудитории, размерах скидок, модели дистрибуции контента и тому подобное. Условно, “надо показать оффер на $4.99, сейчас посмотрим, что в нем можно продать и с какой скидкой”. Насколько я понимаю, многие старые проекты рано или поздно приходят к такой модели, так как это позволяет лучше планировать и достигать поставленные цели по выручке.
Так вот. У меня есть подозрение, что на старте игры пользователю выгоднее показывать триггерные офферы, а персональные офферы — больше важны на поздних этапах, когда пользователи могут оценивать выгодность оффера и планировать долгосрочно. Но я не знаю, как можно это относительно легко проверить.
Также очень хочется скрестить обе модели. То есть давать оффер на необходимую сумму, но продавать в нем то, что пользователю нужно в этот момент. Или как сделать плавный переход от одной системы к другой. И тут тоже у меня нет какого-то простого и изящного решения, не знаю, как это можно хорошо сделать.
Если у вас есть примеры других систем офферов или опыт их оптимизации — расскажите, пожалуйста.
👍8
Dev2dev выпустили еще одну методичку, теперь по монетизации проектов. Внутри весьма обыденно — классическое перечисление метрик и их взаимосвязей, ничего про оперирование и принятие продуктовых решений на основе этих метрик. Несколько бестолковый блок по ARPU и привычная маета с разделением cumARPU и LTV (кажется, это вообще тема отдельного разговора). Плюс выделение Social LTV и фактора виральности, при этом нет про ad monetization.
Однако к методичке есть бонус (не знаю, был ли он раньше) — открытый доступ к демо-проекту в dev2dev. Тоже не предел мечтаний, но зато начинающие аналитики могут посмотреть, как организованы метрики, как они визуализируются, и так далее. Плюс разные сегменты и методы расчета метрик. В общем, для первого знакомства с продуктовыми дашбордами и инструментами верхнеуровневой и быстрой проверки гипотез вполне подойдет.
Однако к методичке есть бонус (не знаю, был ли он раньше) — открытый доступ к демо-проекту в dev2dev. Тоже не предел мечтаний, но зато начинающие аналитики могут посмотреть, как организованы метрики, как они визуализируются, и так далее. Плюс разные сегменты и методы расчета метрик. В общем, для первого знакомства с продуктовыми дашбордами и инструментами верхнеуровневой и быстрой проверки гипотез вполне подойдет.
❤11
На еще одном локальном митапе восхитительная Ева Иванова рассказывала, как у них в G5 построен процесс выбора проектов для прототипов. Они делают большое предварительное исследование (и на пользователях в качественных исследованиях, и с помощью различных сервисов) по аудитории, состоянии и перспективах рынка, о возможной маркетинговой упаковке продукта и т. д. И на основе этих данных продюсеры уже смотрят на свои концепты.
Мне кажется, что-то в таком подходе есть — каким бы ни был интересным концепт, игнорировать глобальные тренды или не очень четко очерчивать ЦА и ее потребности все же не стоит. Да и понимание рынка растет.
С другой стороны, все это разбивается о конструкцию метагейма и монетизации. Можно хорошо изучить аудиторию, придумать интересный концепт, но все равно не суметь выстроить монетизацию так, чтобы проект был успешен. И тут у меня появляются сомнения — стоит ли тратить много ресурсов на предварительные маркетинговые исследования.
В общем, не знаю. Будем пробовать, видимо.
Мне кажется, что-то в таком подходе есть — каким бы ни был интересным концепт, игнорировать глобальные тренды или не очень четко очерчивать ЦА и ее потребности все же не стоит. Да и понимание рынка растет.
С другой стороны, все это разбивается о конструкцию метагейма и монетизации. Можно хорошо изучить аудиторию, придумать интересный концепт, но все равно не суметь выстроить монетизацию так, чтобы проект был успешен. И тут у меня появляются сомнения — стоит ли тратить много ресурсов на предварительные маркетинговые исследования.
В общем, не знаю. Будем пробовать, видимо.
❤5
MyTracker выпустили методичку по многоруким бандитам. Внутри описание ключевой идеи, границ применимости, алгоритмов и, самое важное, примеры. Не сказать, что какая-то эксклюзивная информация, но мне методичка понравилась. Особенно интересными показалисль блок по оценке работы алгоритмов и практические советы.
Для желающих чуть глубже погрузиться в тему есть классическая статья Паши Нестерова на хабре, там формулы, куски кода, картинки и гифки. Ну и котики, конечно же.
Меня достаточно часто спрашивают, используем ли мы многоруких бандитов и почему нет. Мой ответ лежит в области общего подхода к A/B-тестам и тестированию гипотез — для меня A/B-тест это больше интервенция в сложное поведение пользователя, чем попытка оптимизировать одну определенную метрику. Поэтому в A/B-тестах мы смотрим не только метрику, которую хотели изменить, но и как в целом поменялось поведение пользователя и во время теста, и в каком-то интервале после.
Так что на применение многоруких бандитов в продуктовой аналитике (в геймдеве) я смотрю с некоторым скепсисом. Наверное, можно, но у меня нет такого опыта. Все это, впрочем, не отменяет ценности бандитов в маркетинге и привлечении пользователей — для тестирования креативов и т.д.
Для желающих чуть глубже погрузиться в тему есть классическая статья Паши Нестерова на хабре, там формулы, куски кода, картинки и гифки. Ну и котики, конечно же.
Меня достаточно часто спрашивают, используем ли мы многоруких бандитов и почему нет. Мой ответ лежит в области общего подхода к A/B-тестам и тестированию гипотез — для меня A/B-тест это больше интервенция в сложное поведение пользователя, чем попытка оптимизировать одну определенную метрику. Поэтому в A/B-тестах мы смотрим не только метрику, которую хотели изменить, но и как в целом поменялось поведение пользователя и во время теста, и в каком-то интервале после.
Так что на применение многоруких бандитов в продуктовой аналитике (в геймдеве) я смотрю с некоторым скепсисом. Наверное, можно, но у меня нет такого опыта. Все это, впрочем, не отменяет ценности бандитов в маркетинге и привлечении пользователей — для тестирования креативов и т.д.
👍7❤1
В чате по монетизации кто-то искал эксперта "по играм с успешными кейсами. Нужно помочь сформировать kpi для игр". Мой ответ местные умельцы сразу же засунули в генератор мемов. Впрочем, суть все равно та же — так или иначе, на мой взгляд, деньги и окупаемость и есть основной критерий успеха игры (особенно f2p). Собственно, это одна из причин, почему применение в геймдеве фреймворка north star метрик кажется мне сомнительной затеей.
👍2😁1