Generative AI – Telegram
Generative AI
26.5K subscribers
493 photos
4 videos
82 files
270 links
Welcome to Generative AI
👨‍💻 Join us to understand and use the tech
👩‍💻 Learn how to use Open AI & Chatgpt
🤖 The REAL No.1 AI Community

Admin: @coderfun

Buy ads: https://telega.io/c/generativeai_gpt
Download Telegram
Generative AI in Data Analytics
👍4
Forwarded from Artificial Intelligence
𝐇𝐨𝐰 𝐭𝐨 𝐁𝐞𝐠𝐢𝐧 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐀𝐈 𝐀𝐠𝐞𝐧𝐭𝐬

🔹 𝐋𝐞𝐯𝐞𝐥 𝟏: 𝐅𝐨𝐮𝐧𝐝𝐚𝐭𝐢𝐨𝐧𝐬 𝐨𝐟 𝐆𝐞𝐧𝐀𝐈 𝐚𝐧𝐝 𝐑𝐀𝐆

▪️ Introduction to Generative AI (GenAI): Understand the basics of Generative AI, its key use cases, and why it's important in modern AI development.

▪️ Large Language Models (LLMs): Learn the core principles of large-scale language models like GPT, LLaMA, or PaLM, focusing on their architecture and real-world applications.

▪️ Prompt Engineering Fundamentals: Explore how to design and refine prompts to achieve specific results from LLMs.

▪️ Data Handling and Processing: Gain insights into data cleaning, transformation, and preparation techniques crucial for AI-driven tasks.

🔹 𝐋𝐞𝐯𝐞𝐥 𝟐: 𝐀𝐝𝐯𝐚𝐧𝐜𝐞𝐝 𝐂𝐨𝐧𝐜𝐞𝐩𝐭𝐬 𝐢𝐧 𝐀𝐈 𝐀𝐠𝐞𝐧𝐭𝐬

▪️ API Integration for AI Models: Learn how to interact with AI models through APIs, making it easier to integrate them into various applications.

▪️ Understanding Retrieval-Augmented Generation (RAG): Discover how to enhance LLM performance by leveraging external data for more informed outputs.

▪️ Introduction to AI Agents: Get an overview of AI agents—autonomous entities that use AI to perform tasks or solve problems.

▪️ Agentic Frameworks: Explore popular tools like LangChain or OpenAI’s API to build and manage AI agents.

▪️ Creating Simple AI Agents: Apply your foundational knowledge to construct a basic AI agent.

▪️ Agentic Workflow Overview: Understand how AI agents operate, focusing on planning, execution, and feedback loops.

▪️ Agentic Memory: Learn how agents retain context across interactions to improve performance and consistency.

▪️ Evaluating AI Agents: Explore methods for assessing and improving the performance of AI agents.

▪️ Multi-Agent Collaboration: Delve into how multiple agents can collaborate to solve complex problems efficiently.

▪️ Agentic RAG: Learn how to integrate Retrieval-Augmented Generation techniques within AI agents, enhancing their ability to use external data sources effectively.

Join for more AI Resources: https://news.1rj.ru/str/machinelearning_deeplearning
How to use ChatGPT to create Presentation
👍6
Future Trends in Artificial Intelligence 👇👇

1. AI in healthcare: With the increasing demand for personalized medicine and precision healthcare, AI is expected to play a crucial role in analyzing large amounts of medical data to diagnose diseases, develop treatment plans, and predict patient outcomes.

2. AI in finance: AI-powered solutions are expected to revolutionize the financial industry by improving fraud detection, risk assessment, and customer service. Robo-advisors and algorithmic trading are also likely to become more prevalent.

3. AI in autonomous vehicles: The development of self-driving cars and other autonomous vehicles will rely heavily on AI technologies such as computer vision, natural language processing, and machine learning to navigate and make decisions in real-time.

4. AI in manufacturing: The use of AI and robotics in manufacturing processes is expected to increase efficiency, reduce errors, and enable the automation of complex tasks.

5. AI in customer service: Chatbots and virtual assistants powered by AI are anticipated to become more sophisticated, providing personalized and efficient customer support across various industries.

6. AI in agriculture: AI technologies can be used to optimize crop yields, monitor plant health, and automate farming processes, contributing to sustainable and efficient agricultural practices.

7. AI in cybersecurity: As cyber threats continue to evolve, AI-powered solutions will be crucial for detecting and responding to security breaches in real-time, as well as predicting and preventing future attacks.
👍1🔥1
Important questions to ace your machine learning interview with an approach to answer:

1. Machine Learning Project Lifecycle:
   - Define the problem
   - Gather and preprocess data
   - Choose a model and train it
   - Evaluate model performance
   - Tune and optimize the model
   - Deploy and maintain the model

2. Supervised vs Unsupervised Learning:
   - Supervised Learning: Uses labeled data for training (e.g., predicting house prices from features).
   - Unsupervised Learning: Uses unlabeled data to find patterns or groupings (e.g., clustering customer segments).

3. Evaluation Metrics for Regression:
   - Mean Absolute Error (MAE)
   - Mean Squared Error (MSE)
   - Root Mean Squared Error (RMSE)
   - R-squared (coefficient of determination)

4. Overfitting and Prevention:
   - Overfitting: Model learns the noise instead of the underlying pattern.
   - Prevention: Use simpler models, cross-validation, regularization.

5. Bias-Variance Tradeoff:
   - Balancing error due to bias (underfitting) and variance (overfitting) to find an optimal model complexity.

6. Cross-Validation:
   - Technique to assess model performance by splitting data into multiple subsets for training and validation.

7. Feature Selection Techniques:
   - Filter methods (e.g., correlation analysis)
   - Wrapper methods (e.g., recursive feature elimination)
   - Embedded methods (e.g., Lasso regularization)

8. Assumptions of Linear Regression:
   - Linearity
   - Independence of errors
   - Homoscedasticity (constant variance)
   - No multicollinearity

9. Regularization in Linear Models:
   - Adds a penalty term to the loss function to prevent overfitting by shrinking coefficients.

10. Classification vs Regression:
    - Classification: Predicts a categorical outcome (e.g., class labels).
    - Regression: Predicts a continuous numerical outcome (e.g., house price).

11. Dimensionality Reduction Algorithms:
    - Principal Component Analysis (PCA)
    - t-Distributed Stochastic Neighbor Embedding (t-SNE)

12. Decision Tree:
    - Tree-like model where internal nodes represent features, branches represent decisions, and leaf nodes represent outcomes.

13. Ensemble Methods:
    - Combine predictions from multiple models to improve accuracy (e.g., Random Forest, Gradient Boosting).

14. Handling Missing or Corrupted Data:
    - Imputation (e.g., mean substitution)
    - Removing rows or columns with missing data
    - Using algorithms robust to missing values

15. Kernels in Support Vector Machines (SVM):
    - Linear kernel
    - Polynomial kernel
    - Radial Basis Function (RBF) kernel
👍71
Tools Every AI Engineer Should Know

1. Data Science Tools
Python: Preferred language with libraries like NumPy, Pandas, Scikit-learn.
R: Ideal for statistical analysis and data visualization.
Jupyter Notebook: Interactive coding environment for Python and R.
MATLAB: Used for mathematical modeling and algorithm development.
RapidMiner: Drag-and-drop platform for machine learning workflows.
KNIME: Open-source analytics platform for data integration and analysis.

2. Machine Learning Tools
Scikit-learn: Comprehensive library for traditional ML algorithms.
XGBoost & LightGBM: Specialized tools for gradient boosting.
TensorFlow: Open-source framework for ML and DL.
PyTorch: Popular DL framework with a dynamic computation graph.
H2O.ai: Scalable platform for ML and AutoML.
Auto-sklearn: AutoML for automating the ML pipeline.

3. Deep Learning Tools
Keras: User-friendly high-level API for building neural networks.
PyTorch: Excellent for research and production in DL.
TensorFlow: Versatile for both research and deployment.
ONNX: Open format for model interoperability.
OpenCV: For image processing and computer vision.
Hugging Face: Focused on natural language processing.

4. Data Engineering Tools
Apache Hadoop: Framework for distributed storage and processing.
Apache Spark: Fast cluster-computing framework.
Kafka: Distributed streaming platform.
Airflow: Workflow automation tool.
Fivetran: ETL tool for data integration.
dbt: Data transformation tool using SQL.

5. Data Visualization Tools
Tableau: Drag-and-drop BI tool for interactive dashboards.
Power BI: Microsoft’s BI platform for data analysis and visualization.
Matplotlib & Seaborn: Python libraries for static and interactive plots.
Plotly: Interactive plotting library with Dash for web apps.
D3.js: JavaScript library for creating dynamic web visualizations.

6. Cloud Platforms
AWS: Services like SageMaker for ML model building.
Google Cloud Platform (GCP): Tools like BigQuery and AutoML.
Microsoft Azure: Azure ML Studio for ML workflows.
IBM Watson: AI platform for custom model development.

7. Version Control and Collaboration Tools
Git: Version control system.
GitHub/GitLab: Platforms for code sharing and collaboration.
Bitbucket: Version control for teams.

8. Other Essential Tools

Docker: For containerizing applications.
Kubernetes: Orchestration of containerized applications.
MLflow: Experiment tracking and deployment.
Weights & Biases (W&B): Experiment tracking and collaboration.
Pandas Profiling: Automated data profiling.
BigQuery/Athena: Serverless data warehousing tools.
Mastering these tools will ensure you are well-equipped to handle various challenges across the AI lifecycle.

#artificialintelligence
👍7
Elon Musk launches Grok 3 AI, ‘the smartest AI on earth’

Grok 3

1️⃣ 10x Smarter

Grok 3 is 10 times more trained than Grok 2.

2️⃣ Supercharged Compute

200K GPUs, doubled in just 92 days!
Crushing Benchmarks: Beats Gemini 2 Pro & GPT-4o. Even Grok-3 Mini is competitive.

3️⃣ Elite Chatbot Performance

Achieved a record-breaking Elo score of 1400 in Chatbot Arena.

4️⃣ Powerful Reasoning

Excels in coding, problem-solving, and creative tasks.

5️⃣ Creative Genius

Generates unique games & novel ideas.

6️⃣ Big Brain Mode

More compute = deeper reasoning.
Next-Gen AI Search: Introducing DeepSearch—a smarter way to explore information.

7️⃣ Rapid Upgrades

Improvements happening daily!
Grok Voice App: Launching in a week!
👍3
Forwarded from Coding Projects
Mastering LLM & Generative AI
👍1🙏1
API gateways.png
134 KB
𝐓𝐨𝐩 𝐌𝐢𝐜𝐫𝐨𝐬𝐞𝐫𝐯𝐢𝐜𝐞𝐬 𝐃𝐞𝐬𝐢𝐠𝐧 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐬

➡️ 1. API Gateway Pattern: Centralizes external access to your microservices, simplifying communication and providing a single entry point for client requests.

➡️ 2. Backends for Frontends Pattern (BFF): Creates dedicated backend services for each frontend, optimizing performance and user experience tailored to each platform.

➡️ 3. Service Discovery Pattern: Enables microservices to dynamically discover and communicate with each other, simplifying service orchestration and enhancing system scalability.

➡️ 4. Circuit Breaker Pattern: Implements a fault-tolerant mechanism for microservices, preventing cascading failures by automatically detecting and isolating faulty services.

➡️ 5. Retry Pattern: Enhances microservices' resilience by automatically retrying failed operations, increasing the chances of successful execution and minimizing transient issues.
👍4
Simpsons in 90s Style