Java Books – Telegram
Java Books
14.2K subscribers
192 photos
12 videos
269 files
258 links
Java Библиотека

По всем вопросам- @notxxx1

@ai_machinelearning_big_data - machine learning

@pythonl - Python

@itchannels_telegram - 🔥 best it channels

@ArtificialIntelligencedl - AI

@pythonlbooks-📚

@programming_books_it -it 📚

№ 5032728887
Download Telegram
🎓 Архив открытых курсов прямо в телеграм!

Вот огромная база материалов, которая пополлняется каждый день!

>Python (96гб видео)
>C# (45гб курсов)
>Английский (101гб курсов)
>Java (23гб видео)
>PHP (43гб видео)
>Мобильная разработка (22гб курсов)
>Go ( 132гб видео)
>Rust (35 гб видео)
>SQL (43гб видео)
>MySQL (31гб видео)
>Другое (234гб видео)

Крутейший Архив на 20241Гб: Курсов, книг, шпаргалок, стаетй, лекция ресурсы — всё собрано в одном месте: @datacours
👎76👍4
Java Program Design Principles, Polymorphism, and Patterns

Книга

@java_library
7🔥4👍3
🌟 Introduction to Bash noscripting — открытая книга от Bobby Iliev

В некоторых ситуациях проще и быстрее написать костыль на Bash, чем мониторить готовые решения.
И как раз для желающих прокачать свои скиллы написания Bash-скриптов и была написана эта книга, держите
Кроме веб-версии есть и pdf

🖥 GitHub

@java_library
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
9🔥2👍1
Spring Boot

📌 Docs

@java_library
6😁2🔥1😭1
Ubuntu Server Guide (PDF)

📚 Книга

@java_library
5👍4
5👍3🔥3
Java Program Design Principles, Polymorphism, and Patterns

📚 Book

@java_library
6👍4🔥2
Java - The complete reference - Eleventh edition

📚 Book

@java_library
👍76👎1
Android Programming The Big Nerd Ranch Guid

📚 Book

@java_library
4👍3🔥1
Linear Algebra Done Right

📓 Book

@java_library
👍53
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:

МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pro_python_code
Хакинг: t.me/linuxkalii
Devops: t.me/devOPSitsec
АНАЛИЗ Данных: t.me/data_analysis_ml
Javanoscript: t.me/javanoscriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Linux: t.me/linuxacademiya
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/golang_interview
React: t.me/react_tg
Rust: t.me/rust_code
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc


💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://news.1rj.ru/str/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://news.1rj.ru/str/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://news.1rj.ru/str/addlist/BkskQciUW_FhNjEy
👍54🔥1
100_React_JS_Interview_Q_A.pdf
519.5 KB
⚡️ Огромная коллекция разборов задач с собеседований по различным языкам программирования.

@java_library
7👍4🔥2
Forwarded from Machinelearning
✔️ Книга+практика : Understanding Deep Learning

Книга “Understanding Deep Learning” посвящена идеям и принципам, лежащим в основе глубокого обучения. Подача материала построена таким образом, чтобы читатель мог понять материал настолько эффективно, насколько это возможно. Для читателей, желающих углубиться в изучение, в каждой главе приведены соответствующие задачи, записные книжки по Python и подробные справочные материалы.

В первой части книги представлены модели глубокого обучения и обсуждается, как их обучать, измерять их производительность и улучшать эту производительность.

В следующей части рассматриваются архитектуры, которые специализируются на изображениях, тексте и графических данных. Для свободного понимания этих двух глав требуется понимать принципы линейной алгебры, матанализа и теории вероятностей.

Последующие части книги посвящены генеративным моделям и методике обучения с подкреплением. Эти главы требуют больших знаний в области теории вероятностей и математического анализа.

В последней главе обсуждается этика искусственного интеллекта и призыв к практикующим инженерам задуматься о моральных последствиях своей работы.

Автор книги: Simon J. D. Prince - почетный профессор информатики в Университете Bath (Великобритания) , со-автор более 80 опубликованных исследований в области ML.
Научный сотрудник, специализирующийся на искусственном интеллекте и глубоком обучении, он руководил группами ресерча в Anthropics Technologies Ltd, Borealis AI и других компаниях.

Дополнительно, на отдельном сайте книги, читателям доступны:

🟢ответы на наиболее частые вопросы студентов;
🟢ipynb - ноутбуки для практических занятий по материалам книги;
🟢интерактивные иллюстрации по темам;
🟢презентации по каждой главе для преподавателей, которые захотят построить свое обучение на содержимом книги;
🟢большой список статей по 12 направлениям для продолжения обучения после прочтения книги: AI Theory, Transformers & LLMs, Unsupervised learning, Natural language processing, Computer vision и др.

▶️Дата последней актуализации книги : 28 августа 2024 года.


📌Стоимость: бесплатно


🟡Сайт книги
🖥Github


@ai_machinelearning_big_data

#AI #ML #Book
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍63