Forwarded from AI Prompts | ChatGPT | Google Gemini | Claude
List of Top 12 Coding Channels on WhatsApp:
1. Python Programming:
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
2. Coding Resources:
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
3. Coding Projects:
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
4. Coding Interviews:
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
5. Java Programming:
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
6. Javanoscript:
https://whatsapp.com/channel/0029VavR9OxLtOjJTXrZNi32
7. Web Development:
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
8. Artificial Intelligence:
https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
9. Data Science:
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
10. Machine Learning:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. SQL:
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
12. GitHub:
https://whatsapp.com/channel/0029Vawixh9IXnlk7VfY6w43
ENJOY LEARNING 👍👍
1. Python Programming:
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
2. Coding Resources:
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
3. Coding Projects:
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
4. Coding Interviews:
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
5. Java Programming:
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
6. Javanoscript:
https://whatsapp.com/channel/0029VavR9OxLtOjJTXrZNi32
7. Web Development:
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
8. Artificial Intelligence:
https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
9. Data Science:
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
10. Machine Learning:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. SQL:
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
12. GitHub:
https://whatsapp.com/channel/0029Vawixh9IXnlk7VfY6w43
ENJOY LEARNING 👍👍
❤3
Forwarded from Artificial Intelligence
𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 𝗦𝗤𝗟 𝗖𝗮𝗻 𝗕𝗲 𝗙𝘂𝗻! 𝟰 𝗜𝗻𝘁𝗲𝗿𝗮𝗰𝘁𝗶𝘃𝗲 𝗣𝗹𝗮𝘁𝗳𝗼𝗿𝗺𝘀 𝗧𝗵𝗮𝘁 𝗙𝗲𝗲𝗹 𝗟𝗶𝗸𝗲 𝗮 𝗚𝗮𝗺𝗲😍
Think SQL is all about dry syntax and boring tutorials? Think again.🤔
These 4 gamified SQL websites turn learning into an adventure — from solving murder mysteries to exploring virtual islands, you’ll write real SQL queries while cracking clues and completing missions📊📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4nh6PMv
These platforms make SQL interactive, practical, and fun✅️
Think SQL is all about dry syntax and boring tutorials? Think again.🤔
These 4 gamified SQL websites turn learning into an adventure — from solving murder mysteries to exploring virtual islands, you’ll write real SQL queries while cracking clues and completing missions📊📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4nh6PMv
These platforms make SQL interactive, practical, and fun✅️
Tools & Languages in AI & Machine Learning
Want to build the next ChatGPT or a self-driving car algorithm? You need to master the right tools. Today, we’ll break down the tech stack that powers AI innovation.
1. Python – The Heartbeat of AI
Python is the most widely used programming language in AI. It’s simple, versatile, and backed by thousands of libraries.
Why it matters: Readable syntax, massive community, and endless ML/AI resources.
2. NumPy & Pandas – Data Handling Pros
Before building models, you clean and understand data. These libraries make it easy.
NumPy: Fast matrix computations
Pandas: Smart data manipulation and analysis
3. Scikit-learn – For Traditional ML
Want to build a model to predict house prices or classify emails as spam? Scikit-learn is perfect for regression, classification, clustering, and more.
4. TensorFlow & PyTorch – Deep Learning Giants
These are the two leading frameworks used for building neural networks, CNNs, RNNs, LLMs, and more.
TensorFlow: Backed by Google, highly scalable
PyTorch: Preferred in research for its flexibility and Pythonic style
5. Keras – The Friendly Deep Learning API
Built on top of TensorFlow, it allows quick prototyping of deep learning models with minimal code.
6. OpenCV – For Computer Vision
Want to build face recognition or object detection apps? OpenCV is your go-to for processing images and video.
7. NLTK & spaCy – NLP Toolkits
These tools help machines understand human language. You’ll use them to build chatbots, summarize text, or analyze sentiment.
8. Jupyter Notebook – Your AI Playground
Interactive notebooks where you can write code, visualize data, and explain logic in one place. Great for experimentation and demos.
9. Google Colab – Free GPU-Powered Coding
Run your AI code with GPUs for free in the cloud — ideal for training ML models without any setup.
10. Hugging Face – Pre-trained AI Models
Use models like BERT, GPT, and more with just a few lines of code. No need to train everything from scratch!
To build smart AI solutions, you don’t need 100 tools — just the right ones. Start with Python, explore scikit-learn, then dive into TensorFlow or PyTorch based on your goal.
Artificial intelligence learning series: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Want to build the next ChatGPT or a self-driving car algorithm? You need to master the right tools. Today, we’ll break down the tech stack that powers AI innovation.
1. Python – The Heartbeat of AI
Python is the most widely used programming language in AI. It’s simple, versatile, and backed by thousands of libraries.
Why it matters: Readable syntax, massive community, and endless ML/AI resources.
2. NumPy & Pandas – Data Handling Pros
Before building models, you clean and understand data. These libraries make it easy.
NumPy: Fast matrix computations
Pandas: Smart data manipulation and analysis
3. Scikit-learn – For Traditional ML
Want to build a model to predict house prices or classify emails as spam? Scikit-learn is perfect for regression, classification, clustering, and more.
4. TensorFlow & PyTorch – Deep Learning Giants
These are the two leading frameworks used for building neural networks, CNNs, RNNs, LLMs, and more.
TensorFlow: Backed by Google, highly scalable
PyTorch: Preferred in research for its flexibility and Pythonic style
5. Keras – The Friendly Deep Learning API
Built on top of TensorFlow, it allows quick prototyping of deep learning models with minimal code.
6. OpenCV – For Computer Vision
Want to build face recognition or object detection apps? OpenCV is your go-to for processing images and video.
7. NLTK & spaCy – NLP Toolkits
These tools help machines understand human language. You’ll use them to build chatbots, summarize text, or analyze sentiment.
8. Jupyter Notebook – Your AI Playground
Interactive notebooks where you can write code, visualize data, and explain logic in one place. Great for experimentation and demos.
9. Google Colab – Free GPU-Powered Coding
Run your AI code with GPUs for free in the cloud — ideal for training ML models without any setup.
10. Hugging Face – Pre-trained AI Models
Use models like BERT, GPT, and more with just a few lines of code. No need to train everything from scratch!
To build smart AI solutions, you don’t need 100 tools — just the right ones. Start with Python, explore scikit-learn, then dive into TensorFlow or PyTorch based on your goal.
Artificial intelligence learning series: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
WhatsApp.com
Artificial Intelligence & Data Science Projects | Machine Learning | Coding Resources | Tech Updates
Channel • 546K followers • Perfect channel to learn Machine Learning & Artificial Intelligence
For promotions, contact thedatasimplifier@gmail.com
🔰 Learn Data Science, Deep Learning, Python with Tensorflow, Keras & many more
Everything about programming…
For promotions, contact thedatasimplifier@gmail.com
🔰 Learn Data Science, Deep Learning, Python with Tensorflow, Keras & many more
Everything about programming…
❤3
Forwarded from Artificial Intelligence
𝗙𝗥𝗘𝗘 𝗧𝗲𝗰𝗵 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗧𝗼 𝗜𝗺𝗽𝗿𝗼𝘃𝗲 𝗬𝗼𝘂𝗿 𝗦𝗸𝗶𝗹𝗹𝘀𝗲𝘁 😍
✅ Artificial Intelligence – Master AI & Machine Learning
✅ Blockchain – Understand decentralization & smart contracts💰
✅ Cloud Computing – Learn AWS, Azure&cloud infrastructure ☁
✅ Web 3.0 – Explore the future of the Internet &Apps 🌐
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/4aM1QO0
Enroll For FREE & Get Certified 🎓
✅ Artificial Intelligence – Master AI & Machine Learning
✅ Blockchain – Understand decentralization & smart contracts💰
✅ Cloud Computing – Learn AWS, Azure&cloud infrastructure ☁
✅ Web 3.0 – Explore the future of the Internet &Apps 🌐
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/4aM1QO0
Enroll For FREE & Get Certified 🎓
❤2
Intent | AI-Enhanced Telegram
🚨 Breaking: Telegram’s translator is off-air!
🌐 Intent’s rock-solid translation—86 languages in real time
⬆️ Chat swipe summons AI for seamless context replies
🎤 AI voice-to-text, lightning fast
🤖 One-click hub for GPT-4o, Claude 3.7, Gemini 2 & more
🎁 Limited-time free AI credits
📱 Supports Android & iOS
📮Download
🚨 Breaking: Telegram’s translator is off-air!
🌐 Intent’s rock-solid translation—86 languages in real time
⬆️ Chat swipe summons AI for seamless context replies
🎤 AI voice-to-text, lightning fast
🤖 One-click hub for GPT-4o, Claude 3.7, Gemini 2 & more
🎁 Limited-time free AI credits
📱 Supports Android & iOS
📮Download
❤1
𝗧𝗼𝗽 𝗖𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀 𝗢𝗳𝗳𝗲𝗿𝗶𝗻𝗴 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 😍
TCS :- https://pdlink.in/4cHavCa
Infosys :- https://pdlink.in/4jsHZXf
Cisco :- https://pdlink.in/4fYr1xO
HP :- https://pdlink.in/3DrNsxI
IBM :- https://pdlink.in/44GsWoC
Google:- https://pdlink.in/3YsujTV
Microsoft :- https://pdlink.in/40OgK1w
Enroll For FREE & Get Certified 🎓
TCS :- https://pdlink.in/4cHavCa
Infosys :- https://pdlink.in/4jsHZXf
Cisco :- https://pdlink.in/4fYr1xO
HP :- https://pdlink.in/3DrNsxI
IBM :- https://pdlink.in/44GsWoC
Google:- https://pdlink.in/3YsujTV
Microsoft :- https://pdlink.in/40OgK1w
Enroll For FREE & Get Certified 🎓
❤2
Artificial Intelligence isn't easy!
It’s the cutting-edge field that enables machines to think, learn, and act like humans.
To truly master Artificial Intelligence, focus on these key areas:
0. Understanding AI Fundamentals: Learn the basic concepts of AI, including search algorithms, knowledge representation, and decision trees.
1. Mastering Machine Learning: Since ML is a core part of AI, dive into supervised, unsupervised, and reinforcement learning techniques.
2. Exploring Deep Learning: Learn neural networks, CNNs, RNNs, and GANs to handle tasks like image recognition, NLP, and generative models.
3. Working with Natural Language Processing (NLP): Understand how machines process human language for tasks like sentiment analysis, translation, and chatbots.
4. Learning Reinforcement Learning: Study how agents learn by interacting with environments to maximize rewards (e.g., in gaming or robotics).
5. Building AI Models: Use popular frameworks like TensorFlow, PyTorch, and Keras to build, train, and evaluate your AI models.
6. Ethics and Bias in AI: Understand the ethical considerations and challenges of implementing AI responsibly, including fairness, transparency, and bias.
7. Computer Vision: Master image processing techniques, object detection, and recognition algorithms for AI-powered visual applications.
8. AI for Robotics: Learn how AI helps robots navigate, sense, and interact with the physical world.
9. Staying Updated with AI Research: AI is an ever-evolving field—stay on top of cutting-edge advancements, papers, and new algorithms.
Artificial Intelligence is a multidisciplinary field that blends computer science, mathematics, and creativity.
💡 Embrace the journey of learning and building systems that can reason, understand, and adapt.
⏳ With dedication, hands-on practice, and continuous learning, you’ll contribute to shaping the future of intelligent systems!
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
It’s the cutting-edge field that enables machines to think, learn, and act like humans.
To truly master Artificial Intelligence, focus on these key areas:
0. Understanding AI Fundamentals: Learn the basic concepts of AI, including search algorithms, knowledge representation, and decision trees.
1. Mastering Machine Learning: Since ML is a core part of AI, dive into supervised, unsupervised, and reinforcement learning techniques.
2. Exploring Deep Learning: Learn neural networks, CNNs, RNNs, and GANs to handle tasks like image recognition, NLP, and generative models.
3. Working with Natural Language Processing (NLP): Understand how machines process human language for tasks like sentiment analysis, translation, and chatbots.
4. Learning Reinforcement Learning: Study how agents learn by interacting with environments to maximize rewards (e.g., in gaming or robotics).
5. Building AI Models: Use popular frameworks like TensorFlow, PyTorch, and Keras to build, train, and evaluate your AI models.
6. Ethics and Bias in AI: Understand the ethical considerations and challenges of implementing AI responsibly, including fairness, transparency, and bias.
7. Computer Vision: Master image processing techniques, object detection, and recognition algorithms for AI-powered visual applications.
8. AI for Robotics: Learn how AI helps robots navigate, sense, and interact with the physical world.
9. Staying Updated with AI Research: AI is an ever-evolving field—stay on top of cutting-edge advancements, papers, and new algorithms.
Artificial Intelligence is a multidisciplinary field that blends computer science, mathematics, and creativity.
💡 Embrace the journey of learning and building systems that can reason, understand, and adapt.
⏳ With dedication, hands-on practice, and continuous learning, you’ll contribute to shaping the future of intelligent systems!
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
❤2
𝗛𝗼𝘄 𝘁𝗼 𝗚𝗲𝘁 𝗦𝘁𝗮𝗿𝘁𝗲𝗱 𝗶𝗻 𝗔𝗿𝘁𝗶𝗳𝗶𝗰𝗶𝗮𝗹 𝗜𝗻𝘁𝗲𝗹𝗹𝗶𝗴𝗲𝗻𝗰𝗲 𝘄𝗶𝘁𝗵 𝗭𝗲𝗿𝗼 𝗘𝘅𝗽𝗲𝗿𝗶𝗲𝗻𝗰𝗲!🧠⚡
AI might sound complex. But guess what?
You don’t need a PhD or 5 years of experience to break into this field.
Here’s your 6-step beginner roadmap to launch your AI journey the smart way👇
🔹 𝗦𝘁𝗲𝗽 𝟭: Learn the Basics of Python (Your AI Superpower)
Python is the language of AI.
✅ Learn variables, loops, functions, and data structures
✅ Practice with platforms like W3Schools, SoloLearn, or Replit
✅ Understand NumPy & Pandas basics (they’ll be your go-to tools)
🔹 𝗦𝘁𝗲𝗽 𝟮: Understand What AI Really Is
Before diving deep, get clarity.
✅ What is AI vs ML vs Deep Learning?
✅ Learn core concepts like Supervised vs Unsupervised Learning
✅ Follow beginner-friendly YouTubers like “StatQuest” or “Codebasics”
🔹 𝗦𝘁𝗲𝗽 𝟯: Build Simple AI Projects (Even as a Beginner)
Start applying your skills with fun mini-projects:
✅ Spam Email Classifier
✅ House Price Predictor
✅ Rock-Paper-Scissors Game using AI
Pro Tip: Use scikit-learn for most of these!
🔹 𝗦𝘁𝗲𝗽 𝟰: Get Comfortable with Data (AI Runs on It!)
AI = Algorithms + Data
✅ Learn basic data cleaning with Pandas
✅ Explore simple datasets from Kaggle or UCI ML Repository
✅ Practice EDA (Exploratory Data Analysis) with Matplotlib & Seaborn
🔹 𝗦𝘁𝗲𝗽 𝟱: Take Free AI Courses (No Cost Learning)
You don’t need a fancy bootcamp to start learning.
✅ “AI For Everyone” by Andrew Ng (Coursera)
✅ “Machine Learning with Python” by IBM (edX)
✅ Kaggle’s Learn Track: Intro to ML
🔹 𝗦𝘁𝗲𝗽 𝟲: Join AI Communities & Share Your Work
✅ Join AI Discord servers, Reddit threads, and LinkedIn groups
✅ Post your projects on GitHub
✅ Engage in AI hackathons, challenges, and build in public
Your network = Your next opportunity.
🎯 𝗬𝗼𝘂𝗿 𝗙𝗶𝗿𝘀𝘁 𝗔𝗜 𝗣𝗿𝗼𝗷𝗲𝗰𝘁 = 𝗬𝗼𝘂𝗿 𝗘𝗻𝘁𝗿𝘆 𝗣𝗼𝗶𝗻𝘁
It’s not about knowing everything—it’s about starting.
Consistency will compound.
You’ll go from “beginner” to “builder” faster than you think.
Free Artificial Intelligence Resources: https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
#ai
AI might sound complex. But guess what?
You don’t need a PhD or 5 years of experience to break into this field.
Here’s your 6-step beginner roadmap to launch your AI journey the smart way👇
🔹 𝗦𝘁𝗲𝗽 𝟭: Learn the Basics of Python (Your AI Superpower)
Python is the language of AI.
✅ Learn variables, loops, functions, and data structures
✅ Practice with platforms like W3Schools, SoloLearn, or Replit
✅ Understand NumPy & Pandas basics (they’ll be your go-to tools)
🔹 𝗦𝘁𝗲𝗽 𝟮: Understand What AI Really Is
Before diving deep, get clarity.
✅ What is AI vs ML vs Deep Learning?
✅ Learn core concepts like Supervised vs Unsupervised Learning
✅ Follow beginner-friendly YouTubers like “StatQuest” or “Codebasics”
🔹 𝗦𝘁𝗲𝗽 𝟯: Build Simple AI Projects (Even as a Beginner)
Start applying your skills with fun mini-projects:
✅ Spam Email Classifier
✅ House Price Predictor
✅ Rock-Paper-Scissors Game using AI
Pro Tip: Use scikit-learn for most of these!
🔹 𝗦𝘁𝗲𝗽 𝟰: Get Comfortable with Data (AI Runs on It!)
AI = Algorithms + Data
✅ Learn basic data cleaning with Pandas
✅ Explore simple datasets from Kaggle or UCI ML Repository
✅ Practice EDA (Exploratory Data Analysis) with Matplotlib & Seaborn
🔹 𝗦𝘁𝗲𝗽 𝟱: Take Free AI Courses (No Cost Learning)
You don’t need a fancy bootcamp to start learning.
✅ “AI For Everyone” by Andrew Ng (Coursera)
✅ “Machine Learning with Python” by IBM (edX)
✅ Kaggle’s Learn Track: Intro to ML
🔹 𝗦𝘁𝗲𝗽 𝟲: Join AI Communities & Share Your Work
✅ Join AI Discord servers, Reddit threads, and LinkedIn groups
✅ Post your projects on GitHub
✅ Engage in AI hackathons, challenges, and build in public
Your network = Your next opportunity.
🎯 𝗬𝗼𝘂𝗿 𝗙𝗶𝗿𝘀𝘁 𝗔𝗜 𝗣𝗿𝗼𝗷𝗲𝗰𝘁 = 𝗬𝗼𝘂𝗿 𝗘𝗻𝘁𝗿𝘆 𝗣𝗼𝗶𝗻𝘁
It’s not about knowing everything—it’s about starting.
Consistency will compound.
You’ll go from “beginner” to “builder” faster than you think.
Free Artificial Intelligence Resources: https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
#ai
❤3
🚀 𝗧𝗼𝗽 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗩𝗶𝗿𝘁𝘂𝗮𝗹 𝗜𝗻𝘁𝗲𝗿𝗻𝘀𝗵𝗶𝗽𝘀 – 𝗙𝗥𝗘𝗘 & 𝗢𝗻𝗹𝗶𝗻𝗲😍
Boost your resume with real-world experience from global giants! 💼📊
🔹 Deloitte – https://pdlink.in/4iKcgA4
🔹 Accenture – https://pdlink.in/44pfljI
🔹 TATA – https://pdlink.in/3FyjDgp
🔹 BCG – https://pdlink.in/4lyeRyY
✨ 100% Virtual
🎓 Certificate Included
🕒 Flexible Timings
📈 Great for Beginners & Students
Apply now and gain an edge in your career! 🚀📈
Boost your resume with real-world experience from global giants! 💼📊
🔹 Deloitte – https://pdlink.in/4iKcgA4
🔹 Accenture – https://pdlink.in/44pfljI
🔹 TATA – https://pdlink.in/3FyjDgp
🔹 BCG – https://pdlink.in/4lyeRyY
✨ 100% Virtual
🎓 Certificate Included
🕒 Flexible Timings
📈 Great for Beginners & Students
Apply now and gain an edge in your career! 🚀📈
Forwarded from Artificial Intelligence
𝗙𝗥𝗘𝗘 𝗢𝗻𝗹𝗶𝗻𝗲 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗧𝗼 𝗘𝗻𝗿𝗼𝗹𝗹 𝗜𝗻 𝟮𝟬𝟮𝟱 😍
Learn Fundamental Skills with Free Online Courses & Earn Certificates
SQL:- https://pdlink.in/4lvR4zF
AWS:- https://pdlink.in/4nriVCH
Cybersecurity:- https://pdlink.in/3T6pg8O
Data Analytics:- https://pdlink.in/43TGwnM
Enroll for FREE & Get Certified 🎓
Learn Fundamental Skills with Free Online Courses & Earn Certificates
SQL:- https://pdlink.in/4lvR4zF
AWS:- https://pdlink.in/4nriVCH
Cybersecurity:- https://pdlink.in/3T6pg8O
Data Analytics:- https://pdlink.in/43TGwnM
Enroll for FREE & Get Certified 🎓
Copy & paste these 7 ChatGPT prompts to create an irresistible Resume/CV 👇
Showcase your strengths. Turn applications into interview invites!
Use these 10 proven ChatGPT prompts:
📈 Prompt 1: ATS Keyword Optimizer
Analyze the job denoscription for [Position] and my resume. Identify 10 crucial keywords. Suggest natural placements in my resume, ensuring ATS compatibility. Present results as a table with Keyword, Relevance Score (1-10), and Suggested Placement. My resume: [Paste Resume]. Job denoscription: [Paste Denoscription].
📈 Prompt 2: Experience Section Enhancer
Optimize the bullet points for my most recent role as [Job Title]. Focus on achievements, skills utilized, and quantifiable results. Use strong action verbs. Present a before/after comparison with explanations for changes. Current job denoscription: [Paste Current Bullets].
📈 Prompt 3: Skills Hierarchy Creator
Evaluate my skills for [Job Denoscription]. Create a skills hierarchy with 3 tiers: core, advanced, and distinguishing skills. Suggest how to demonstrate each skill briefly. Present a visual skills pyramid with examples. My resume: [Paste Resume]. Job requirements: [Paste Requirements].
📈 Prompt 4: Professional Summary Crafter
Write a compelling professional summary for my resume for [Job Title]. Incorporate my unique value proposition, key skills, and career experience. Limit to 3-4 sentences. Provide 3 versions: conservative, balanced, and bold. My resume: [Paste Resume]. Job denoscription: [Paste Denoscription].
📈 Prompt 5: Education Optimizer
Refine my education section for [Job Title]. Highlight relevant coursework, projects, or academic achievements. Suggest how to present ongoing education/certifications effectively. Provide a before/after version with explanations. My resume: [Paste Resume]. Job denoscription: [Paste Denoscription].
📈 Prompt 6: Technical Skills Showcase
List my technical skills for [Industry/Role]. Create a visual representation (Described in Text) that organizes these skills by proficiency level and relevance to [Target Role]. Suggestion skills to acquire/improve. My resume: [Paste Resume]. Job denoscription: [Paste Denoscription].
📈 Prompt 7: Positive Career Gap Framing
Write an explanation for my [X months/years] career gap between [Start Date] and [End Date]. Focus on growth, skills gained, and valuable experiences. Show how these enhance my fit for [Target Job Title]. Create 3 versions for resume, cover letter, and interview response. My resume: [Paste Resume]. Job denoscription: [Paste Job Denoscription].
Join for more: https://news.1rj.ru/str/aiindi
#aiprompt
Showcase your strengths. Turn applications into interview invites!
Use these 10 proven ChatGPT prompts:
📈 Prompt 1: ATS Keyword Optimizer
Analyze the job denoscription for [Position] and my resume. Identify 10 crucial keywords. Suggest natural placements in my resume, ensuring ATS compatibility. Present results as a table with Keyword, Relevance Score (1-10), and Suggested Placement. My resume: [Paste Resume]. Job denoscription: [Paste Denoscription].
📈 Prompt 2: Experience Section Enhancer
Optimize the bullet points for my most recent role as [Job Title]. Focus on achievements, skills utilized, and quantifiable results. Use strong action verbs. Present a before/after comparison with explanations for changes. Current job denoscription: [Paste Current Bullets].
📈 Prompt 3: Skills Hierarchy Creator
Evaluate my skills for [Job Denoscription]. Create a skills hierarchy with 3 tiers: core, advanced, and distinguishing skills. Suggest how to demonstrate each skill briefly. Present a visual skills pyramid with examples. My resume: [Paste Resume]. Job requirements: [Paste Requirements].
📈 Prompt 4: Professional Summary Crafter
Write a compelling professional summary for my resume for [Job Title]. Incorporate my unique value proposition, key skills, and career experience. Limit to 3-4 sentences. Provide 3 versions: conservative, balanced, and bold. My resume: [Paste Resume]. Job denoscription: [Paste Denoscription].
📈 Prompt 5: Education Optimizer
Refine my education section for [Job Title]. Highlight relevant coursework, projects, or academic achievements. Suggest how to present ongoing education/certifications effectively. Provide a before/after version with explanations. My resume: [Paste Resume]. Job denoscription: [Paste Denoscription].
📈 Prompt 6: Technical Skills Showcase
List my technical skills for [Industry/Role]. Create a visual representation (Described in Text) that organizes these skills by proficiency level and relevance to [Target Role]. Suggestion skills to acquire/improve. My resume: [Paste Resume]. Job denoscription: [Paste Denoscription].
📈 Prompt 7: Positive Career Gap Framing
Write an explanation for my [X months/years] career gap between [Start Date] and [End Date]. Focus on growth, skills gained, and valuable experiences. Show how these enhance my fit for [Target Job Title]. Create 3 versions for resume, cover letter, and interview response. My resume: [Paste Resume]. Job denoscription: [Paste Job Denoscription].
Join for more: https://news.1rj.ru/str/aiindi
#aiprompt
❤2
𝗦𝘁𝗮𝗿𝘁 𝗮 𝗖𝗮𝗿𝗲𝗲𝗿 𝗶𝗻 𝗗𝗮𝘁𝗮 𝗼𝗿 𝗧𝗲𝗰𝗵 (𝗙𝗿𝗲𝗲 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 𝗣𝗮𝘁𝗵)😍
Dreaming of a career in data or tech but don’t know where to begin?👨💻📌
Don’t worry — this step-by-step FREE learning path will guide you from scratch to job-ready, without spending a rupee! 💻💼
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/45HFUDh
Enjoy Learning ✅️
Dreaming of a career in data or tech but don’t know where to begin?👨💻📌
Don’t worry — this step-by-step FREE learning path will guide you from scratch to job-ready, without spending a rupee! 💻💼
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/45HFUDh
Enjoy Learning ✅️
❤1
Useful Telegram Channels to boost your career 😄👇
Free Courses with Certificate
Web Development
Data Science & Machine Learning
Programming books
Python Free Courses
Data Analytics
Ethical Hacking & Cyber Security
English Speaking & Communication
Stock Marketing & Investment Banking
Excel
ChatGPT Hacks
SQL
Tableau & Power BI
Coding Projects
Data Science Projects
Jobs & Internship Opportunities
Coding Interviews
Udemy Free Courses with Certificate
Cryptocurrency & Bitcoin
Python Projects
Data Analyst Interview
Data Analyst Jobs
Python Interview
ChatGPT Hacks
ENJOY LEARNING 👍👍
Free Courses with Certificate
Web Development
Data Science & Machine Learning
Programming books
Python Free Courses
Data Analytics
Ethical Hacking & Cyber Security
English Speaking & Communication
Stock Marketing & Investment Banking
Excel
ChatGPT Hacks
SQL
Tableau & Power BI
Coding Projects
Data Science Projects
Jobs & Internship Opportunities
Coding Interviews
Udemy Free Courses with Certificate
Cryptocurrency & Bitcoin
Python Projects
Data Analyst Interview
Data Analyst Jobs
Python Interview
ChatGPT Hacks
ENJOY LEARNING 👍👍
❤5
Forwarded from Python Projects & Resources
𝗖𝗜𝗦𝗖𝗢 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍
- Data Analytics
- Data Science
- Python
- Javanoscript
- Cybersecurity
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/4fYr1xO
Enroll For FREE & Get Certified🎓
- Data Analytics
- Data Science
- Python
- Javanoscript
- Cybersecurity
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/4fYr1xO
Enroll For FREE & Get Certified🎓
❤1
Artificial Intelligence (AI) is the simulation of human intelligence in machines that are designed to think, learn, and make decisions. From virtual assistants to self-driving cars, AI is transforming how we interact with technology.
Hers is the brief A-Z overview of the terms used in Artificial Intelligence World
A - Algorithm: A set of rules or instructions that an AI system follows to solve problems or make decisions.
B - Bias: Prejudice in AI systems due to skewed training data, leading to unfair outcomes.
C - Chatbot: AI software that can hold conversations with users via text or voice.
D - Deep Learning: A type of machine learning using layered neural networks to analyze data and make decisions.
E - Expert System: An AI that replicates the decision-making ability of a human expert in a specific domain.
F - Fine-Tuning: The process of refining a pre-trained model on a specific task or dataset.
G - Generative AI: AI that can create new content like text, images, audio, or code.
H - Heuristic: A rule-of-thumb or shortcut used by AI to make decisions efficiently.
I - Image Recognition: The ability of AI to detect and classify objects or features in an image.
J - Jupyter Notebook: A tool widely used in AI for interactive coding, data visualization, and documentation.
K - Knowledge Representation: How AI systems store, organize, and use information for reasoning.
L - LLM (Large Language Model): An AI trained on large text datasets to understand and generate human language (e.g., GPT-4).
M - Machine Learning: A branch of AI where systems learn from data instead of being explicitly programmed.
N - NLP (Natural Language Processing): AI's ability to understand, interpret, and generate human language.
O - Overfitting: When a model performs well on training data but poorly on unseen data due to memorizing instead of generalizing.
P - Prompt Engineering: Crafting effective inputs to steer generative AI toward desired responses.
Q - Q-Learning: A reinforcement learning algorithm that helps agents learn the best actions to take.
R - Reinforcement Learning: A type of learning where AI agents learn by interacting with environments and receiving rewards.
S - Supervised Learning: Machine learning where models are trained on labeled datasets.
T - Transformer: A neural network architecture powering models like GPT and BERT, crucial in NLP tasks.
U - Unsupervised Learning: A method where AI finds patterns in data without labeled outcomes.
V - Vision (Computer Vision): The field of AI that enables machines to interpret and process visual data.
W - Weak AI: AI designed to handle narrow tasks without consciousness or general intelligence.
X - Explainable AI (XAI): Techniques that make AI decision-making transparent and understandable to humans.
Y - YOLO (You Only Look Once): A popular real-time object detection algorithm in computer vision.
Z - Zero-shot Learning: The ability of AI to perform tasks it hasn’t been explicitly trained on.
Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Hers is the brief A-Z overview of the terms used in Artificial Intelligence World
A - Algorithm: A set of rules or instructions that an AI system follows to solve problems or make decisions.
B - Bias: Prejudice in AI systems due to skewed training data, leading to unfair outcomes.
C - Chatbot: AI software that can hold conversations with users via text or voice.
D - Deep Learning: A type of machine learning using layered neural networks to analyze data and make decisions.
E - Expert System: An AI that replicates the decision-making ability of a human expert in a specific domain.
F - Fine-Tuning: The process of refining a pre-trained model on a specific task or dataset.
G - Generative AI: AI that can create new content like text, images, audio, or code.
H - Heuristic: A rule-of-thumb or shortcut used by AI to make decisions efficiently.
I - Image Recognition: The ability of AI to detect and classify objects or features in an image.
J - Jupyter Notebook: A tool widely used in AI for interactive coding, data visualization, and documentation.
K - Knowledge Representation: How AI systems store, organize, and use information for reasoning.
L - LLM (Large Language Model): An AI trained on large text datasets to understand and generate human language (e.g., GPT-4).
M - Machine Learning: A branch of AI where systems learn from data instead of being explicitly programmed.
N - NLP (Natural Language Processing): AI's ability to understand, interpret, and generate human language.
O - Overfitting: When a model performs well on training data but poorly on unseen data due to memorizing instead of generalizing.
P - Prompt Engineering: Crafting effective inputs to steer generative AI toward desired responses.
Q - Q-Learning: A reinforcement learning algorithm that helps agents learn the best actions to take.
R - Reinforcement Learning: A type of learning where AI agents learn by interacting with environments and receiving rewards.
S - Supervised Learning: Machine learning where models are trained on labeled datasets.
T - Transformer: A neural network architecture powering models like GPT and BERT, crucial in NLP tasks.
U - Unsupervised Learning: A method where AI finds patterns in data without labeled outcomes.
V - Vision (Computer Vision): The field of AI that enables machines to interpret and process visual data.
W - Weak AI: AI designed to handle narrow tasks without consciousness or general intelligence.
X - Explainable AI (XAI): Techniques that make AI decision-making transparent and understandable to humans.
Y - YOLO (You Only Look Once): A popular real-time object detection algorithm in computer vision.
Z - Zero-shot Learning: The ability of AI to perform tasks it hasn’t been explicitly trained on.
Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
❤5
7 ChatGPT Prompts To Transform Your Life In Next 30 Days:
[Save for later]
[Save for later]
❤1