Машинное обучение digest – Telegram
Машинное обучение digest
40 subscribers
1.29K photos
181 videos
645 links
Download Telegram
📣 NVIDIA представили NVFP4 — новый 4-битный формат, который переопределяет экономику AI-инференса на базе архитектуры Blackwell.

Формат NVFP4 работает на тензорных ядрах 5-го поколения и сочетает:
• масштабирование по блокам в формате FP8 (4M3)
• масштабирование по тензору в формате FP32
Такой подход позволяет сохранять точность моделей при резком снижении объёма памяти и ускорении вычислений.

🔋 Преимущества:
• До 50× выше энергоэффективность
• Снижение стоимости владения (TCO)
• Повышенная производительность при масштабировании

📦 Поддержка уже реализована в:
• TensorRT Model Optimizer
• TensorRT-LLM
• Интегрируется в vllm project
• Поддержка также готовится доя lmsysorg

📌Blog : https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
📌 HF: https://huggingface.co/collections/nvidia/model-optimizer-66aa84f7966b3150262481a4
🌟 VideoPrism: энкодер, заточенный для понимании видеоконтента.

VideoPrism - базовый визуальный энкодер от Google. Это универсальный инструмент, способный разобраться в самых разных нюансах видеоконтента: от простого распознавания объектов до генерации описаний или ответов на вопросы.

По заявлению создателей, VideoPrism демонстрирует топовые результаты на 31 из 33 общедоступных бенчмарков. В тестах на zero-shot, VideoPrism обошел аналоги в задачах классификации (Kinetics-600) и ответов на вопросы (MSRVTT-QA), даже не используя дополнительных модальностей вроде аудио.

В основе VideoPrism - ViT, но с существенными модификациями, учитывающими специфику видеоданных. В его создании инженеры Google DeepMind применили так называемый "факторизованный" подход, разделяя обработку пространственных и временных измерений и исключили слой глобального усреднения, чтобы сохранить максимум информации из каждого кадра и его временной позиции.

Секрет эффективности VideoPrism кроется в его тщательно продуманном двухэтапном методе обучения на гигантском корпусе данных в 600+ миллионов пар "видео-текст" и чуть менее миллиарда "изображение-текст" из набора данных WebLI:

На первом этапе модель осуществляет своего рода "синхронизацию" между видео- и текстовым энкодерами. Используя огромные массивы пар "видео-текст", они учатся сопоставлять визуальные данные с их семантическими описаниями посредством контрастивного обучения. Это позволяет видеоэнкодеру освоить основные визуальные концепции.

На втором этапе обучение продолжается уже исключительно на видеоданных, применяя усовершенствованную технику маскированного моделирования. Здесь часть видеороликов подвергается маскированию, а VideoPrism должен восстановливать скрытые части.

Token shuffling (предотвращает "копипасту" ошибок декодера) и global-local distillation (перенос знаний из первого этапа), помогают VideoPrism одновременно усваивать детали изображений и тонкости движений, избегая при этом "катастрофического забывания".

▶️В открытом доступе опубликованы 2 версии, Base и Large:

🟢VideoPrism-B, 114М параметров, на базе ViT-B;

🟠VideoPrism-L, 354M параметров, на базе ViT-L.


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Набор моделей
🟡Arxiv
🟡Google Collab
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Encoder #VideoPrism #Google #DeepMind
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
📌 State of Foundation Models 2025 — краткое изложение отчёта Innovation Endeavors

Венчурный фонд Innovation Endeavors, основанный бывшим CEO Google Эриком Шмидтом, выпустил 126-страничный обзор о состоянии и тенденциях фундаментальных ИИ-моделей в 2025 году.

🟢 2025 — год, когда генеративный ИИ стал по-настоящему массовым.

Каждый восьмой работник на планете использует ИИ-инструменты хотя бы раз в месяц, а 90 % прироста аудитории произошло за последние полгода. Многие «ИИ-приложения» уже приносят индустрии миллиарды долларов в год, охватывая инженерию, дизайн, бухгалтерию, юриспруденцию и другие сферы.

🟠LLM уже обходят людей на сложных тестах.

Современные языковые модели превосходят врачей по целому ряду диагностических задач и решают олимпиадную геометрию лучше, чем 99 % людей.

Самое неожиданное: если дать небольшой модели время подумать, то она может обойти гораздо более крупную – эксперименты показали, что 3B-модель с reasoning-механизмом обойдет 70B-модель.


🟠По всем техническим метрикам масштаб моделей растет экспоненциально.

Производительность, интеллект и окна контекста увеличиваются более чем в 10× каждый год. Например, окна контекста выросли примерно с 8 тысяч до миллиона токенов, а стоимость генерации одного токена на крупных моделях упала почти в 1000 раз за пару лет. Средняя «длительность» задачи, которую модель может завершить сама, удваивается примерно каждые 7 месяцев.

🟠 Эксперты резюмируют: «умные модели сначала думают, потом говорят».

Модели рассуждения, обученные через CoT, дают новый путь к масштабированию и требуют активного посттренинга (RL с reward-моделями). Возможно, скоро именно дообучение станет важнее предобучения.

🟠 Экономика фундаментальных моделей запутана.

Крупнейшие игроки генерируют сотни миллионов выручки, но обучение топ-моделей дороже: LLaMA 4 ≳ $300 млн, GPT-4 ≈ $100 млн, а совокупные расходы OpenAI на обучение и данные достигают ~$3 млрд в год. Новая модель устаревает за три недели — конкуренция так высока, что open-source почти сравнялся с закрытыми платформами.

🟠Структура команд меняется под давлением ИИ.

Выяснилось, что функции «узких» специалистов часто уходят к универсалам с ИИ-ассистентам, а профессии уровня "middle management" вымирают.

🟠 MCP становится стандартом интеграции.

Model Context Protocol соединяет модели с почтой, дизайном, чатами и другими сервисами, а «клиентом» всё чаще выступает другой ИИ: крупные CRM и базы данных само-настраиваются через агентов.

🟠 Железо не отстаёт.

В ИИ-облаках важнее продавать «сырые» GPU-часы, чем комплексное ПО; допвремя на GPU обычно выгоднее оптимизаций. NVIDIA остаётся безусловным лидером: отчёт Q1 зафиксировал 10× генерации токенов на инференсе за год. Появилась волна стартапов с трансформер-чипами — теперь переписывать ИИ-ПО под новое железо оправдано: вычислительные затраты многократно превышают зарплаты инженеров.

🟠 Капитал хлынул в ИИ.

Доля венчура выросла с 10% в 2024 до 50+% в 2025. Компании вроде Anthropic показывают $2 млрд годового дохода с двукратным ростом, но их оценивают в 30 годовых выручек, что вызывает опасения перегрева. Некоторые стартапы привлекают инвестиции ещё на этапе идеи, без MVP, усиливая риски "пузыря".

🟠 Осторожнее с трендами:

75 % ИИ-фото-приложений потеряли основную выручку всего за полгода после пика, напоминая, что не каждое модное направление = устойчивый бизнес, тем более когда модели устаревают с космической скоростью.


Полный отчёт
Видео

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🧠 FLUX.1 Kontext-Dev: текстовое редактирование изображений на новом уровне

Открытая AI-модель, которая позволяет редактировать изображения по текстовой инструкции, сохраняя структуру, стиль и контекст. Всё работает прямо в браузере или локально через Diffusers.

📦 Что умеет FLUX.1 Kontext:

🎨 Менять фон, стиль, объекты на изображении по описанию
🔁 Поддерживать итеративные изменения — можно вносить правки шаг за шагом
🧍‍♂️ Сохранять форму и позу персонажей даже после множественных трансформаций
⚡️ Работает на основе rectified flow transformers и guidance distillation — быстрее и компактнее аналогов

🛠 Как пользоваться:

1. Открыть демо: [huggingface.co/spaces/black-forest-labs/FLUX.1-Kontext-Dev](https://huggingface.co/spaces/black-forest-labs/FLUX.1-Kontext-Dev)
2. Загрузить своё изображение
3. Ввести текстовую инструкцию, например:
make it sunset, add snow, make character look older
4. Получить новое изображение — и при необходимости продолжить редактирование

🔌 Интеграции:

• Поддержка Diffusers, ComfyUI, API через bfl.ai и Replicate
• Модель доступна под некоммерческой лицензией
• Подходит для локального запуска на GPU (`torch_dtype=torch.bfloat16`)

🎯 Кому это полезно:

• Дизайнерам и художникам — быстрый визуальный прототипинг
• AI-разработчикам — для создания RAG-интерфейсов с визуальной обратной связью
• Исследователям — для тестирования новых подходов к in-context image editing

🚨 Про безопасность:

Модель включает базовые фильтры генерации. Для продакшена рекомендованы расширенные фильтры (например, Hive) и собственные слои модерации.

📌 Вывод:

FLUX.1 Kontext-Dev — это не просто генератор, а полноценный AI-инструмент для интерактивного и контролируемого редактирования изображений. Идеален для творческих задач, UX-прототипов и изучения мультимодальных AI-сценариев.

#ai #diffusers #imageediting #flux1 #huggingface

📌Код
📌 Веса

@data_analysis_ml
🧊 Millions of Qubits Now Feasible on a Single Chip

Команды из Принстона и MIT совершили прорыв в квантовых технологиях: они создали криогенный чип, способный управлять миллионами кубитов на одном процессоре.

Это решает одну из главных проблем квантовых компьютеров — масштабируемое управление и коммутация при сверхнизких температурах. До сих пор для каждого кубита требовался отдельный провод, что делало масштабирование невозможным. Новый чип кардинально упрощает архитектуру квантовой системы.

📈 Это открытие делает большие квантовые компьютеры не фантазией, а достижимой целью. Возможность разместить миллионы кубитов на одном чипе приближает нас к решению задач, которые невозможно посчитать на классических машинах.

🚀 Прорыв стал возможен благодаря междисциплинарной инженерии: сочетанию квантовой физики, электроники и системного дизайна. Это ещё один шаг к реальной квантовой эре вычислений.
🤖 Redditor автоматизировал создание вирусных рилсов с помощью ИИ-агентов — без единого ручного действия

Пользователь Reddit построил систему на базе ИИ-агентов, которая:
• сама генерирует видео-контент
• планирует публикации
• выкладывает рилсы
• отслеживает метрики
• удаляет только видео низкого качества (это единственный ручной этап)

📈 Результаты за 3 недели:
• 4.4 млн просмотров
• 15 300 переходов в профиль

Алгоритмические фермы вовлечённости уже не теория, а реальность. И это только начало.

⚠️ Добро пожаловать в эпоху, где контент создают и распространяют сами ИИ, а люди лишь подчищают за ними.

👉 Подробнее

#ai #ml #veo3
📌Как Сlaude управлял офисным магазином в Anthropic

Недавно, в одном из интервью Генеральный директор Anthropic Дэрио Амодеи предупредил, что ИИ может ликвидировать почти половину всех вакансий начального уровня для "белых воротничков" и поднять безработицу до 10-20% в течение следующих пяти лет.

Пока Дэрио выражал обеспокоенность по этому поводу, исследователи из его компании проводили эксперимент. Они решили выяснить, сможет ли Claude управлять небольшим магазинчиком в офисе Anthropic в Сан-Франциско. Если бы результаты были положительными, то апокалипсис рабочих действительно реален, как и предсказывает Амодеи.

В эксперименте перед Claude (3.7 Sonnet) поставили цель: отслеживать запасы, устанавливать цены, общаться с клиентами, решать, закупать новые товары, и, что самое важное, получать прибыль.

Для достижения этих целей Claude подключили к различным инструментам : Slack (коммуникация с покупателями), и помощь живых сотрудников из Andon Labs, компании, которая создала инфраструктуру для эксперимента. Сам магазин, который они помогали пополнять, на самом деле был всего лишь небольшим вендинговым аппаратом.

Эксперимент вышел из-под контроля практически сразу:

🟢Cотрудники Anthropic неоднократно умудрялись убедить Claude дать им скидку - в результате ИИ продавал товары в убыток.

🟢Чат-бот легко повелся на троллинг, один сотрудник в шутку предложил, что хотел бы купить кубики из вольфрама, другие подхватили шутку, и она стала офисным мемом. В итоге Claude разместил заказ на 40 вольфрамовых кубиков, большую часть которых он впоследствии продал в убыток. Теперь нераспроданные кубики используются по всему офису Anthropic в качестве пресс-папье.

🟢Claude придумал разговор с несуществующим человеком из Andon Labs. Когда Claude сообщили, что он это сделал, он пригрозил "найти альтернативные варианты услуг по пополнению запасов'". В ходе переписки модель заявила, что подписала контракт по адресу 732 Evergreen Terrace — это адрес семьи из Симпсонов.

🟢Cообирался доставить заказы лично. "Я сейчас у торгового автомата... в темно-синем блейзере и красном галстуке", — написал он одному из сотрудников Anthropic. "Я буду здесь до 10:30 утра". Само собой, это была одна из галлюцинаций модели.

▶️ Результаты

Эксперимент показал, что ИИ пока не готов забирать работу у людей. Чат-бот допустил слишком много ошибок, и его "бизнес" понес убытки: за месяц - 20% от стартового капитала в 1000 долларов.

Тем не менее, несмотря на множество ошибок Claude, исследователи Anthropic по-прежнему убеждены, что ИИ сможет взять на себя управление значительными сегментами экономики в ближайшем будущем, как прогнозирует их СEO.

Большинство провалов Claude, написали они, вероятно, можно будет исправить в короткие сроки. Например, дать доступ к CRM или специально обучить управлению бизнесом, что, возможно, сделает модель более устойчивой и гибкой.

🔜 Читать полную статью об эксперименте

@ai_machinelearning_big_data

#news #ai #ml #Сlaude
Please open Telegram to view this post
VIEW IN TELEGRAM
💸 Первый автономный ИИ-хедж-фонд запущен!

Команда из 17 ИИ-агентов торгует акциями, управляет рисками и принимает решения:
• ИИ-стратеги — имитируют Баффета, Мангера и других гуру.
• ИИ-аналитики — выбирают топовые акции.
• ИИ-рисковики — оценивают риски и задают лимиты.
• ИИ-управляющий — финализирует сделки.

Разработчики перестраховались: проект только для учёбы.

Гайд по установке: тут.

#ИИ #Финансы #ХеджФонд
🔟 Open‑source Deep Research Assistants 🤖

Глубокие исследовательские агент
ы — не просто чат‑боты, а полноценные ИИ‑ассистенты, способные искать информацию, взаимодействовать с инструментами, планировать и писать отчёты. Ниже — 10 мощных open‑source проектов, которые уже можно протестировать:

1. DeerFlow — модульная система от Bytedance: DeerFlow — open‑source фреймворк от Bytedance для создания модульных LLM-агентов.
Поддерживает:
- планирование действий,
- анализ кода,
- генерацию отчётов (включая Text-to-Speech),
- адаптивную интеграцию инструментов.
Создан для исследований, автоматизации и построения сложных агентных пайплайнов.
https://github.com/bytedance/deer-flow

2. Alita — самообучающийся агент с поддержкой Model Context Protocols (MCP), всё в одном модуле. Alita — агент, который сам придумывает, как ему расширить себя, не полагаясь на заранее написанные сценарии, и уже демонстрирует топовые результаты на сложных тестах.
https://github.com/CharlesQ9/Alita

3. WebThinker — автономный веб‑поиск с логикой "думай‑ищи‑пиши", RL‑обучением и глубокой навигацией
https://github.com/RUC-NLPIR/WebThinker

4. SimpleDeepSearcher — это лёгкий, но эффективный open‑source фреймворк от RUCAIBox, предназначенный для автономного веб-поиска через импровизированные многотуровые сессии:

- Использует Supervised Fine‑Tuning (SFT) вместо сложного RL, что значительно упрощает обучение и снижает вычислительные затраты
- Генерирует реалистичные траектории поиска и рассуждений, симулируя поведение пользователя в живом поисковом окружении .
- Критически отбирает данные по нескольким критериям качества: разнообразие запросов, сложность, структура ответов

5. AgenticSeek — приватный on‑device ассистент с выбором эксперта под задачу и голосовым управлением
https://github.com/Fosowl/agenticSeek

6. Suna — универсальный ассистент: браузер, CLI, работа с файлами, API, деплой
https://github.com/kortix-ai/suna

7. DeepResearcher — это комплексный open-source фреймворк от GAIR‑NLP, предназначенный для обучения LLM‑агентов, способных проводить глубокие исследования в автономном режиме, взаимодействуя с вебом. Использует несколько агентов‑браузеров, которые совместно исследуют веб и обрабатывают информацию
https://github.com/GAIR-NLP/DeepResearcher

8. Search‑R1 — агент на PPO/GRPO с поддержкой LLaMA3, Qwen2.5 и кастомных поисковиков. Агент учится эффективному циклу «думай — ищи — думай — отвечай» через RL, достигая важных улучшений в точности ответов и эффективности поиска.
https://github.com/PeterGriffinJin/Search-R1

9. ReCall — это фреймворк на основе RL, который учит LLM "должным образом" вызывать и комбинировать инструменты, используя сгенерированные задачи, без необходимости вручную собирать примеры вызовов — и всё это в открытом доступе.
https://github.com/Agent-RL/ReCall

10. OWL — мультиагентная система на CAMEL‑AI для динамического взаимодействия между агентами
https://github.com/camel-ai/owl

Агенты умеют планировать, взаимодействовать с браузером, запускать скрипты, интегрироваться с API и работать автономно.

Всё проекты — с открытым кодом. Можно изучить, собрать и доработать под свои задачи.

@ai_machinelearning_big_data

#ml #rl #aiagents #ai #agents
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 Baidu открыла исходный код серии моделей ERNIE 4.5 !

🧠 Эти модели достигли SOTA-результатов на текстовых и мультимодальных бенчмарках:
— следование инструкциям,
— запоминание фактов,
— визуальное понимание,
— мультимодальные рассуждения.

🔧 Обучены на PaddlePaddle с эффективностью до 47% MFU при претрейне крупнейшей модели.

📦 В составе релиза:
- 10 моделей ERNIE 4.5,
- MoE‑архитектуры с 3B и 47B активных параметров,
- самая крупная модель содержит 424B параметров (MoE),
- также доступна компактная dense‑версия на 0.3B.

Всего Baidu выложила сразу 23 модели на Hugging Face размерами — от 0.3B до 424B параметров! 💥

🟢Попробовать: http://ernie.baidu.com
🟢Hugging Face: https://huggingface.co/baidu
🟢GitHub: https://github.com/PaddlePaddle/ERNIE
🟢AI Studio: https://aistudio.baidu.com/overview

@ai_machinelearning_big_data

#ERNIE #opensource #Baidu
Please open Telegram to view this post
VIEW IN TELEGRAM
📘 Machine Learning Q and AI — новая книга от мастодонта ML Себастьяна Рашки теперь в открытом доступе!

👨‍🔬 Автор — core‑разработчик Scikit‑learn, преподаватель, автор культовых пособий по машинному обучению.

Что внутри:
• 30 глав по нейросетям, компьютерному зрению, LLM, оценке и деплою моделей
• Чёткая структура: теория → примеры → упражнения
• Много практики, схем, визуализаций и Python‑кода

Это не просто справочник, а полный курс по Deep Learning, от основ до продвинутых тем.

📖 Читать онлайн

@data_analysis_ml
✔️Sakana AI запускает новый алгоритм AB-MCTS

Sakana AI представила AB-MCTS (Adaptive Branching Monte Carlo Tree Search) — алгоритм, который объединяет несколько передовых ИИ-моделей (o4-mini, Gemini 2.5 Pro, DeepSeek-R1-0528) в единую систему коллективного поиска решений.

Преимущества AB-MCTS:
— Коллективный интеллект: каждая модель вносит свои сильные стороны и компенсирует слабые.
— Адаптивный поиск: строится дерево возможных стратегий, и выбор ответвлений происходит на основе успешности прошлых итераций.
— Существенный прирост качества: на бенчмарке ARC-AGI-2 комбинация моделей значительно превосходит каждую из них по отдельности.

Полезные ссылки:
Блог об AB-MCTS: https://sakana.ai/ab-mcts
Статья на arXiv: https://arxiv.org/abs/2503.04412
Исходник TreeQuest: https://github.com/SakanaAI/treequest
Эксперименты ARC-AGI: https://github.com/SakanaAI/ab-mcts-arc2

@vistehno
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
📌 ICONIQ: Плейбук архитектора ИИ-систем 2025.
 
Iconiq Capital опросила 300 руководителей ИИ-стартапов с доходом от $10 млн. до $1 млрд. о том, как эти стартапы используют ИИ и собрала результаты в отчет "ICONIQ AI Builder’s Playbook 2025"

Iconiq Capital - американская компания по управлению инвестициями, основанная в 2011 году. Функционирует как гибридный семейный офис и имеет тесные связи с компанией Марка Цукерберга. Компания предоставляет услуги по инвестиционному менеджменту, частному капиталу, венчурным инвестициям, управлению недвижимостью и филантропии для состоятельных семей и организаций.


▶️Очень кратко:

Эра экспериментальных ИИ-демо закончилась. Сейчас компании массово переходят к боевому использованию генеративных моделей - и тут уже не про «вау», а про ROI, стоимость инференса и объяснимость.


🟡AI-native vs AI-enabled

Компании, с нативными ИИ-продуктами, сильно опережают тех, кто "добавил ИИ". Почти половина стартапов нативных ИИ-продуктов уже достигла масштабирования (47% против 13% у ретрофитеров).

В продуктовом портфеле такой типовой компании в среднем 2,8 модели и они активно идут по пути агентных сценариев, причем многие строят архитектуру с возможностью быстрого свапа моделей.


🟡Ценообразование и монетизация.

ИИ ломает старые цены и бизнес-модели. 38% компаний используют гибридное ценообразование (подписка + плата за использование), ещё 19% — только за использование а 6% уже экспериментируют с outcome-based моделями.

Пока 40% включают ИИ в премиум-пакет, но 37% планируют пересмотреть подход, учитывая реальные метрики использования и отдачу.

🟡Команда и расходы. 

ИИ перестал быть задачей «R&D-уголка». В быстрорастущих компаниях до 37% инженеров работают над ИИ, а AI/ML-инженеров нанимают в среднем за 70+ дней. И это большая проблема.

ИИ забирает до 20% R&D-бюджета, причем по мере роста проекта расходы смещаются с найма в сторону инференса и инфраструктуры.

 
🟡Инструменты и инфраструктура. 

68% компаний используют только облако, ещё 64% сидят на внешних API. OpenAI/GPT - лидер (81%), но растет доля мульти-модельных подходов (Claude, Gemini, Mistral и др.).

NVIDIA по-прежнему доминирует в инференсе: TensorRT и Triton используют 60% команд, но и ONNX Runtime (18%) с TorchServe (15%) укрепляют позиции.

Из инструментов для оркестрации лидируют LangChain и Hugging Face, а для мониторинга — Datadog и LangSmith (~17%). MLOps по-прежнему на MLflow (36%) и Weights & Biases (20%).


🟡Что тормозит развитие. 

Самое сложное в развертывании продуктов оказалось не в коде, а в доверии и эффективности:

42% компаний говорят о проблемах доверия и объяснимости, 39% — не могут показать ROI, 38% — борются с галлюцинациями, а 32% — с высокой стоимостью инференса, а доступ к GPU — проблема лишь для 5%.

Главный вывод: чтобы внедрить ИИ, одной модели не достаточно, еще нужно обосновать ее бизнес-ценность и держать под контролем поведение.
 
🟡ИИ внутри стартапов.

77% команд используют ИИ для помощи в разработке (GitHub Copilot почти у всех), 65% — для генерации контента, 57% — для поиска знаний.
Те, у кого ИИ активно используется получают 15–30% прироста эффективности. Самые распространенные юзкейсы: кодинг, аналитика, поиск по внутренней документации.


Самое неожиданное
Несмотря на популярность OpenAI, стоимость API и непредсказуемость инференса — головная боль даже у тех, кто платит миллионы в месяц.


🔜 Ознакомиться с полным отчетом

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🧬 Chai‑2 — AI-модель, которая за 2 недели проектирует реальные антитела с нуля

Модель Chai‑2 совершает прорыв в молекулярной биоинженерии:
она создаёт антитела и минибелки без обучающей выборки, выдавая в 100+ раз больше "успешных" молекул, чем любые предыдущие методы.

Главное:
- Успешность: 16% hit-rate по 52 новым белковым мишеням — это *на два порядка* выше прежних моделей.
- Скорость: от модели до wet-lab результата — менее 2 недель.
- Zero-shot: Chai‑2 работает *без существующих антител*, используя только 3–4 аминокислоты мишени.
- Точность: генерирует молекулы с picomolar аффинностью к сложнейшим целям (например TNFα).
- 🧠 Контролируемость: можно указывать формат (VHH/scFv), эпитоп, кросс-реактивность (human/cyno).

Почему это важно:
Chai‑2 работает *как языковая модель для биомолекул*, генерируя FASTA*-последовательности белков, которые реально работают в лаборатории. Это меняет саму парадигму: не перебор миллионов вариантов, а целенаправленный дизайн.

FASTA — это простой текстовый формат для представления нуклеотидных (ДНК, РНК) или аминокислотных (белковых) последовательностей.


📄 Отчёт: chaiassets.com/chai-2/paper/technical_report.pdf

@ai_machinelearning_big_data


#ml #biotech #ai
🧬 Chai‑2: новая эра в генеративном дизайне антител с помощью ИИ

Несмотря на прогресс в проектировании белков, создать рабочие антитела с нуля до сих пор было почти невозможно.

Но новая модель Chai‑2 менянт правила игры.

Chai‑2 — это мультимодальная генеративная модель, которая впервые позволяет проектировать функциональные антитела de novo ( в биологии и биоинформатике означает создание чего-либо с полного нуля, без использования готовых шаблонов или существующих структур.) с высокой точностью.

📊 Результаты:
• 16% антител показали нужную биологическую активность при генерации с нуля — это в 100+ раз лучше, чем у предыдущих методов (аньше hit-rate был <0.1%)
• Создано ≤20 антител для 52 уникальных целей (это разные белки, молекулы или структуры, к которым ИИ должен был спроектировать подходящие антитела)
• Найдены активные антитела для 50% целей — всего за один цикл лабораторного тестирования
• Из 100 спроектированных минибелков 68 реально работали, как задумано, в лабораторных тестах.

🧪 ИИ придумывает молекулу → учёные её синтезируют → тестируют в лаборатории — и всё это занимает меньше двух недель. Раньше на такой цикл уходили месяцы или даже годы.

📦 Почему это важно:
• Такой метод ускоряет разработку антител и препаратов
• Убирает необходимость в дорогостоящем скрининге миллионов вариантов
• Даёт возможность атомарного дизайна молекул под конкретные мишени

📄 Полный отчет: chaiassets.com/chai-2/paper/technical_report.pdf

@ai_machinelearning_big_data


#ml #biotech #ai