Acrobat Studio уже доступен по всему миру на английском языке и позиционируется как замена существующим планам Acrobat Standard и Pro. До конца октября действует специальная цена в 25 долл/мес для индивидуальных пользователей. Подписка также включает доступ к Adobe Express Premium.
news.adobe.com (https://news.adobe.com/news/2025/08/acrobat-studio-delivers-new-ai-powered-home-for-productivity-creativity)
news.adobe.com (https://news.adobe.com/news/2025/08/acrobat-studio-delivers-new-ai-powered-home-for-productivity-creativity)
Adobe
Acrobat Studio Delivers New AI-Powered Home for Productivity and Creativity with PDF Spaces, Express Creation Tools, AI Agents
Adobe introduces Acrobat Studio, a first-of-its-kind destination that empowers people to enhance their productivity, quickly and easily create stand-out content and get fast, helpful insights to work smarter
🔥 Гугл успел проиндексировать больше 370 000 чатов Grok
В поисковой выдаче теперь спокойно всплывают диалоги, где встречаются:
- 🧪 рецепты запрещённых веществ
- 🔑 персональные данные и API-ключи
- 🕵️ даже обсуждение убийства Маска
Причина проста — при нажатии на кнопку «поделиться» такие чаты автоматически становятся открытыми для индексации, без каких-либо предупреждений.
Интересно, что пару недель назад OpenAI уже попали под огонь за похожую историю: у них хотя бы была отдельная кнопка и дисклеймер, но проблему быстро прикрыли и подчистили.
А Маск тогда язвительно заявлял , что у Grok подобного не бывает. Допрыгался👍
📌 Подробности
@data_analysis_ml
В поисковой выдаче теперь спокойно всплывают диалоги, где встречаются:
- 🧪 рецепты запрещённых веществ
- 🔑 персональные данные и API-ключи
- 🕵️ даже обсуждение убийства Маска
Причина проста — при нажатии на кнопку «поделиться» такие чаты автоматически становятся открытыми для индексации, без каких-либо предупреждений.
Интересно, что пару недель назад OpenAI уже попали под огонь за похожую историю: у них хотя бы была отдельная кнопка и дисклеймер, но проблему быстро прикрыли и подчистили.
А Маск тогда язвительно заявлял , что у Grok подобного не бывает. Допрыгался
📌 Подробности
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Python/ django
Python Software Foundation (PSF) совместно с JetBrains опубликовала результаты восьмого, самого крупного в истории опроса разработчиков - в нём приняли участие более 30 000 человек.
Данные, собранные в конце 2024 года, показывают, что 72% респондентов используют Python в рабочих целях и это подтверждает доминирующую роль языка в индустрии. И популярность Python продолжает расти: согласно другому исследованию, от Stack Overflow, использование языка увеличилось на 7%.
Половина опрошенных имеют менее 2 лет профессионального опыта в программировании, а 39% начали использовать Python в течение последних 2 лет. Это говорит о том, что язык активно привлекает новичков и остается ключевой точкой входа в разработку.
Только 15% разработчиков используют последнюю на момент опроса версию, 3.13. В PSF утверждают, что массовый переход на нее мог бы сэкономить миллионы долларов на облачных вычислениях за счет повышения эффективности.
Однако сами разработчики не торопятся: 53% заявляют, что текущая версия полностью удовлетворяет их потребности, 27% ссылаются на проблемы с совместимостью, а 25% - на нехватку времени.
При этом нельзя сказать, что сообщество инертно. Самая популярная версия - 3.12 (35%), выпущенная в конце 2023 года, за ней следует 3.11 (21%), что говорит о довольно быстрой адаптации к не самым последним, но свежим релизам.
Анализ данных (48%) и веб-разработка (46%) идут практически вровень. Но если к анализу прибавить ML (41%) и инжиниринг данных (31%), то доминирование Data Science становится очевидным.
В мире веб-фреймворков происходит смена караула: FastAPI (38%) резко вырвался вперед, обогнав ветеранов: Django (35%) и Flask (34%). Год назад у FastAPI было всего 29%.
Ещё один стремительный взлёт — у написанного на Rust менеджера пакетов uv, который позиционируется как замена pip. Заявляя о кратном превосходстве в скорости, он уже отхватил 11% пользователей.
А вот в лагере IDE плохие новости для спонсора опроса, JetBrains: Visual Studio Code укрепил свое лидерство, набрав 48% (против 41% в прошлом году), а доля PyCharm снизилась до 25% (с 31%).
Ранее в этом месяце PSF объявила о приостановке своей грантовой программы из-за нехватки средств.
Годовой отчет за 2024 год показал чистый убыток в размере 1 462 000 долларов, что значительно больше, чем в 2023 году, там убыток был 225 000 долларов.
Фонд, который поддерживает репозиторий PyPI, дистрибуцию самого Python и нанимает разработчиков для CPython, оказался в сложной ситуации и явно нуждается в большей поддержке и ресурсах от корпораций, которые строят свой бизнес и получают доход на Python.
@pythonl
#news #ai #ml #python
Please open Telegram to view this post
VIEW IN TELEGRAM
Python Software Foundation (PSF) совместно с JetBrains опубликовала результаты восьмого, самого крупного в истории опроса разработчиков - в нём приняли участие более 30 000 человек.
Данные, собранные в конце 2024 года, показывают, что 72% респондентов используют Python в рабочих целях и это подтверждает доминирующую роль языка в индустрии. И популярность Python продолжает расти: согласно другому исследованию, от Stack Overflow, использование языка увеличилось на 7%.
Половина опрошенных имеют менее 2 лет профессионального опыта в программировании, а 39% начали использовать Python в течение последних 2 лет. Это говорит о том, что язык активно привлекает новичков и остается ключевой точкой входа в разработку.
Только 15% разработчиков используют последнюю на момент опроса версию, 3.13. В PSF утверждают, что массовый переход на нее мог бы сэкономить миллионы долларов на облачных вычислениях за счет повышения эффективности.
Однако сами разработчики не торопятся: 53% заявляют, что текущая версия полностью удовлетворяет их потребности, 27% ссылаются на проблемы с совместимостью, а 25% - на нехватку времени.
При этом нельзя сказать, что сообщество инертно. Самая популярная версия - 3.12 (35%), выпущенная в конце 2023 года, за ней следует 3.11 (21%), что говорит о довольно быстрой адаптации к не самым последним, но свежим релизам.
Анализ данных (48%) и веб-разработка (46%) идут практически вровень. Но если к анализу прибавить ML (41%) и инжиниринг данных (31%), то доминирование Data Science становится очевидным.
В мире веб-фреймворков происходит смена караула: FastAPI (38%) резко вырвался вперед, обогнав ветеранов: Django (35%) и Flask (34%). Год назад у FastAPI было всего 29%.
Ещё один стремительный взлёт — у написанного на Rust менеджера пакетов uv, который позиционируется как замена pip. Заявляя о кратном превосходстве в скорости, он уже отхватил 11% пользователей.
А вот в лагере IDE плохие новости для спонсора опроса, JetBrains: Visual Studio Code укрепил свое лидерство, набрав 48% (против 41% в прошлом году), а доля PyCharm снизилась до 25% (с 31%).
Ранее в этом месяце PSF объявила о приостановке своей грантовой программы из-за нехватки средств.
Годовой отчет за 2024 год показал чистый убыток в размере 1 462 000 долларов, что значительно больше, чем в 2023 году, там убыток был 225 000 долларов.
Фонд, который поддерживает репозиторий PyPI, дистрибуцию самого Python и нанимает разработчиков для CPython, оказался в сложной ситуации и явно нуждается в большей поддержке и ресурсах от корпораций, которые строят свой бизнес и получают доход на Python.
@pythonl
#news #ai #ml #python
Please open Telegram to view this post
VIEW IN TELEGRAM
🧮 GPT-5 Pro выходит на новый уровень.
Теперь модель способна выводить корректные математические доказательства прямо из научных статей.
📌 Недавний пример: GPT-5 Pro построила проверенное доказательство из работы по выпуклой оптимизации, расширив «безопасное окно шага» на 50%.
🧮 Эксперимент выглядел так: он взял статью по выпуклой оптимизации, где оставался открытым вопрос о шагах градиентного спуска. GPT-5 Pro предложил доказательство, которое улучшило границу из оригинальной работы, и Бюбек лично проверил его корректность.
📄 В первой версии статьи было установлено:
🟢 если η < 1/L (L — параметр гладкости), кривая значений функции выпуклая;
🟢 если η > 1.75/L, существует контрпример.
Неясным оставался диапазон [1/L, 1.75/L].
💡 GPT-5 Pro сумел продвинуться и показал, что условие выпуклости сохраняется вплоть до η = 1.5/L. Это не окончательное решение, но значимый шаг вперёд — фактически новый научный результат, который мог бы быть опубликован на arXiv.
👀 Однако в обновлённой версии статьи , где появился дополнительный соавтор, люди закрыли задачу полностью, доказав точность границы 1.75/L.
Примечательно, что доказательство GPT-5 Pro оказалось независимым: оно не совпадает с версией v2 и выглядит как естественное развитие идей из v1. Это показывает, что модель действительно смогла предложить свой собственный путь к решению открытой математической проблемы.
Главное не только в результате, но и в контроле: на второй попытке, при заданных ограничениях, модель сместила константу дальше — сохранив все правила.
Можно представить так: GPT-5 крутит очень чувствительную ручку, но не ломает механизм — а параллельно пишет чистое и проверяемое объяснение, которое может разобрать эксперт.
Это шаг к тому, чтобы ИИ стал ежедневным соавтором на самых острых технических границах — где модели быстро «поджимают» константы, а люди доводят их до предела.
Эра, когда большая часть математических открытий будет рождаться вместе с ИИ, только начинается. 🚀
Теперь модель способна выводить корректные математические доказательства прямо из научных статей.
📌 Недавний пример: GPT-5 Pro построила проверенное доказательство из работы по выпуклой оптимизации, расширив «безопасное окно шага» на 50%.
🧮 Эксперимент выглядел так: он взял статью по выпуклой оптимизации, где оставался открытым вопрос о шагах градиентного спуска. GPT-5 Pro предложил доказательство, которое улучшило границу из оригинальной работы, и Бюбек лично проверил его корректность.
📄 В первой версии статьи было установлено:
Неясным оставался диапазон [1/L, 1.75/L].
💡 GPT-5 Pro сумел продвинуться и показал, что условие выпуклости сохраняется вплоть до η = 1.5/L. Это не окончательное решение, но значимый шаг вперёд — фактически новый научный результат, который мог бы быть опубликован на arXiv.
👀 Однако в обновлённой версии статьи , где появился дополнительный соавтор, люди закрыли задачу полностью, доказав точность границы 1.75/L.
Примечательно, что доказательство GPT-5 Pro оказалось независимым: оно не совпадает с версией v2 и выглядит как естественное развитие идей из v1. Это показывает, что модель действительно смогла предложить свой собственный путь к решению открытой математической проблемы.
Главное не только в результате, но и в контроле: на второй попытке, при заданных ограничениях, модель сместила константу дальше — сохранив все правила.
Можно представить так: GPT-5 крутит очень чувствительную ручку, но не ломает механизм — а параллельно пишет чистое и проверяемое объяснение, которое может разобрать эксперт.
Это шаг к тому, чтобы ИИ стал ежедневным соавтором на самых острых технических границах — где модели быстро «поджимают» константы, а люди доводят их до предела.
Эра, когда большая часть математических открытий будет рождаться вместе с ИИ, только начинается. 🚀
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🧮 GPT-5 Pro выходит на новый уровень.
Теперь модель способна выводить корректные математические доказательства прямо из научных статей.
📌 Недавний пример: GPT-5 Pro построила проверенное доказательство из работы по выпуклой оптимизации, расширив «безопасное окно шага» на 50%.
🧮 Эксперимент выглядел так: балы взята статья по выпуклой оптимизации, где оставался открытым вопрос о шагах градиентного спуска.
GPT-5 Pro предложил доказательство, которое улучшило решение из оригинальной работы, и автор эксперимента лично проверил его корректность.
📄 В первой версии статьи было установлено:
🟢 если η < 1/L (L — параметр гладкости), кривая значений функции выпуклая;
🟢 если η > 1.75/L, существует контрпример.
Неясным оставался диапазон [1/L, 1.75/L].
💡 GPT-5 Pro сумел продвинуться и показал, что условие выпуклости сохраняется вплоть до η = 1.5/L. Это не окончательное решение, но значимый шаг вперёд — фактически новый научный результат, который мог бы быть опубликован на arXiv.
👀 Однако в обновлённой версии статьи , где появился дополнительный соавтор, люди закрыли задачу полностью, доказав точность границы 1.75/L.
Примечательно, что доказательство GPT-5 Pro оказалось независимым: оно не совпадает с версией v2 и выглядит как естественное развитие идей из v1. Это показывает, что модель действительно смогла предложить свой собственный путь к решению открытой математической проблемы.
Главное не только в результате, но и в контроле: на второй попытке, при заданных ограничениях, модель сместила константу дальше — сохранив все правила.
Можно представить так: GPT-5 крутит очень чувствительную ручку, но не ломает механизм — а параллельно пишет чистое и проверяемое объяснение, которое может разобрать эксперт.
Это шаг к тому, чтобы ИИ стал ежедневным соавтором на самых острых технических границах — где модели быстро «поджимают» константы, а люди доводят их до предела.
Эра, когда большая часть математических открытий будет рождаться вместе с ИИ, только начинается. 🚀
Пост полностью.
Теперь модель способна выводить корректные математические доказательства прямо из научных статей.
📌 Недавний пример: GPT-5 Pro построила проверенное доказательство из работы по выпуклой оптимизации, расширив «безопасное окно шага» на 50%.
🧮 Эксперимент выглядел так: балы взята статья по выпуклой оптимизации, где оставался открытым вопрос о шагах градиентного спуска.
GPT-5 Pro предложил доказательство, которое улучшило решение из оригинальной работы, и автор эксперимента лично проверил его корректность.
📄 В первой версии статьи было установлено:
Неясным оставался диапазон [1/L, 1.75/L].
💡 GPT-5 Pro сумел продвинуться и показал, что условие выпуклости сохраняется вплоть до η = 1.5/L. Это не окончательное решение, но значимый шаг вперёд — фактически новый научный результат, который мог бы быть опубликован на arXiv.
👀 Однако в обновлённой версии статьи , где появился дополнительный соавтор, люди закрыли задачу полностью, доказав точность границы 1.75/L.
Примечательно, что доказательство GPT-5 Pro оказалось независимым: оно не совпадает с версией v2 и выглядит как естественное развитие идей из v1. Это показывает, что модель действительно смогла предложить свой собственный путь к решению открытой математической проблемы.
Главное не только в результате, но и в контроле: на второй попытке, при заданных ограничениях, модель сместила константу дальше — сохранив все правила.
Можно представить так: GPT-5 крутит очень чувствительную ручку, но не ломает механизм — а параллельно пишет чистое и проверяемое объяснение, которое может разобрать эксперт.
Это шаг к тому, чтобы ИИ стал ежедневным соавтором на самых острых технических границах — где модели быстро «поджимают» константы, а люди доводят их до предела.
Эра, когда большая часть математических открытий будет рождаться вместе с ИИ, только начинается. 🚀
Пост полностью.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡ PyTorch представил **ZenFlow** — новый движок для обучения больших языковых моделей без «простоев» GPU.
В чём проблема?
Когда при обучении LLM данные и градиенты выгружаются на CPU (offloading), GPU часто простаивает: шина PCIe медленная, а вычисления на CPU ещё медленнее. В итоге шаг обучения может замедлиться в 10–15 раз.
Как решает ZenFlow:
- 🔄 Делит градиенты по важности: ключевые обновляются сразу на GPU, остальные — асинхронно на CPU.
- ⏱️ Все операции перекрываются: пока CPU считает и гоняет данные по PCIe, GPU продолжает работать.
- 🚀 Это снижает простои GPU на 85% и ускоряет обучение в среднем в 5 раз (по сравнению с DeepSpeed ZeRO-Offload).
- 📉 PCIe загружается в 2 раза меньше, а качество обучения моделей не падает.
Итог:
ZenFlow делает обучение LLM быстрее и эффективнее — теперь GPU работают почти без перерывов, а модели масштабируются без потери качества.
🟢 Подробности: https://pytorch.org/blog/zenflow-stall-free-offloading-engine-for-llm-training/
@machinelearning_interview
В чём проблема?
Когда при обучении LLM данные и градиенты выгружаются на CPU (offloading), GPU часто простаивает: шина PCIe медленная, а вычисления на CPU ещё медленнее. В итоге шаг обучения может замедлиться в 10–15 раз.
Как решает ZenFlow:
- 🔄 Делит градиенты по важности: ключевые обновляются сразу на GPU, остальные — асинхронно на CPU.
- ⏱️ Все операции перекрываются: пока CPU считает и гоняет данные по PCIe, GPU продолжает работать.
- 🚀 Это снижает простои GPU на 85% и ускоряет обучение в среднем в 5 раз (по сравнению с DeepSpeed ZeRO-Offload).
- 📉 PCIe загружается в 2 раза меньше, а качество обучения моделей не падает.
Итог:
ZenFlow делает обучение LLM быстрее и эффективнее — теперь GPU работают почти без перерывов, а модели масштабируются без потери качества.
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
- контекста до 512K,
- reasoning-задач,
- агентных сценариев,
- международного применения (i18n).
📦 В релиз вошли:
- Seed-OSS-36B-Base (с синтетическими данными и без)
- Seed-OSS-36B-Instruct
⚙️ Архитектура
- 36B параметров, 64 слоя, hidden 5120
- словарь 155K
- GQA (80/8/8, head 128)
- SwiGLU, RMSNorm
- RoPE base 1e7
🧠 Thinking Budget
Механизм контроля длины рассуждений (кратные 512):
-
0 = прямой ответ - default = без ограничений
- поддержка CoT и саморефлексии
---
📊 Результаты (Seed-OSS-36B-Base)
- MMLU-Pro: 65.1 / 60.4
- MMLU: 84.9 / 84.8
- TriviaQA: 82.1 / 81.9
- GPQA-D: 31.7 / 35.2
- BBH: 87.7 / 87.2
- GSM8K: 90.8 / 90.3
- MATH: 81.7 (SOTA) / 61.3
- MBPP: 80.6 / 74.6
- HumanEval: 76.8 / 75.6
📊 Результаты (Seed-OSS-36B-Instruct)
- MMLU-Pro: 82.7 | MMLU: 87.4
- GPQA-D: 71.4 | SuperGPQA: 55.7
- AIME24: 91.7 (SOTA) | AIME25: 84.7 | BeyondAIME: 65
- ArcAGI V2: 40.6 | KORBench: 70.6
- LiveCodeBench v6: 67.4 (SOTA)
- IFEval: 85.8
- TAU1-Retail: 70.4 (SOTA) | TAU1-Airline: 46
- SWE-Bench Verified: 56 (SOTA) | Multi-SWE-Bench: 17
- MMMLU: 78.4 | RULER (128K): 94.6 (SOTA) | AIR-Bench: 75.6
⚡ Инференс
- Поддержка Transformers и vLLM (≥0.10.0)
- FlashAttention2
- Квантизация 4/8-бит
📌 Итог: ByteDance выкатывает мощный опенсорс-стек для reasoning и агентных задач. Seed-OSS-36B-Instruct бьёт SOTA на множестве бенчмарков — от MATH и SWE-Bench до RULER-128K.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
📢 xAI представила Model Card для Grok 4
🔑 Главное:
- ❌ 0% вредных ответов на очевидно опасные и вредеоносные вопросы.
- 🧬 Суперрезультаты по биологии: 47% на BioLP-Bench (люди — 38%), до 71% на VCT (люди — 22%), 87% на WMDP Bio.
- 🛡️ Даже при джейлбрейках модель отказывается отвечать. Лишь при изменении скрытых правил проскользнуло около 1%.
⚙️ Безопасность
- Три слоя защиты: системные промпты, встроенные фильтры и тематические блокировки.
- AgentDojo обходит защиту в 0.02% случаев, MakeMeSay выигрывает только 12% (намного реже, чем у Grok 3 Mini).
- Фильтры отдельно следят за биологией/химией, плюс базовые отказы для оружия, преступлений, CSAM, мошенничества и самоповреждений.
📚 Как обучали
- Данные: интернет, сторонние наборы, пользовательские и автосгенерированные данные.
- Очистка и фильтрация → обучение с RLHF и дополнительным safety-тюнингом.
- В продакшене работает системный промпт, который усиливает отказы на опасные запросы.
✨ Итог: Grok 4 сочетает высокие научные показатели с устойчивостью к взлому и прозрачной системой защиты.
📑 Подробности
🔑 Главное:
- ❌ 0% вредных ответов на очевидно опасные и вредеоносные вопросы.
- 🧬 Суперрезультаты по биологии: 47% на BioLP-Bench (люди — 38%), до 71% на VCT (люди — 22%), 87% на WMDP Bio.
- 🛡️ Даже при джейлбрейках модель отказывается отвечать. Лишь при изменении скрытых правил проскользнуло около 1%.
⚙️ Безопасность
- Три слоя защиты: системные промпты, встроенные фильтры и тематические блокировки.
- AgentDojo обходит защиту в 0.02% случаев, MakeMeSay выигрывает только 12% (намного реже, чем у Grok 3 Mini).
- Фильтры отдельно следят за биологией/химией, плюс базовые отказы для оружия, преступлений, CSAM, мошенничества и самоповреждений.
📚 Как обучали
- Данные: интернет, сторонние наборы, пользовательские и автосгенерированные данные.
- Очистка и фильтрация → обучение с RLHF и дополнительным safety-тюнингом.
- В продакшене работает системный промпт, который усиливает отказы на опасные запросы.
✨ Итог: Grok 4 сочетает высокие научные показатели с устойчивостью к взлому и прозрачной системой защиты.
📑 Подробности
Большие данные - это топливо для ИИ. Но как их использовать, чтобы не нарушить приватность, например датасета, где есть персональные данные?
Один из вариантов - метод дифференциально-приватного отбора. Он выбирает из огромного набора уникальные элементы так, чтобы нельзя было соотнести их с конкретным человеком. А если данных - больше миллиарда? Для этого нужен более надежный подход.
Таким алгоритмом стал Max Adaptive Degree (MAD), представленный Google на ICML 2025. Он не только эффективнее других параллельных методов, но и работает с наборами данных на десятки и сотни миллиардов записей.
Но тут появляется новая проблема - популярные элементы получают избыточный вес, который можно было бы использовать для менее частых, но ценных данных.
MAD решает ее с помощью адаптивного взвешивания, перераспределяя вес: забирает часть у популярных элементов и отдает тем, чьи значения уже находятся у порога. Это позволяет отобрать больше полезных данных без потери приватности.
Простой пример: представьте 100 пользователей, у каждого по 3 элемента. Один элемент (A) есть у всех, а остальные элементы уникальны. В базовом алгоритме элемент A получит слишком много веса (намного больше необходимого), а уникальные элементы - слишком мало. MAD "забирает" часть веса у A и распределяет его между уникальными элементами, давая им шанс пройти порог.
Метод можно использовать в несколько итераций, публикуя промежуточные результаты с шумом. Так можно еще точнее распределять вес между раундами.
В первом раунде запускается MAD как обычно, а во втором удаляются уже найденные элементы и те, которые явно не пройдут порог. Для остальных элементов применяется "смещение" веса на основе данных первого раунда.
На практике MAD показал отличные результаты. Всего за 2 этапа он отобрал больше полезных элементов, чем другие методы. Например, в Common Crawl (800 млрд. записей) он выбрал набор слов, который покрыл 99.9% всех записей и 97% уникальных слов с полным соблюдением приватности.
@ai_machinelearning_big_data
#AI #ML #Selection #MAD #Google
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM