Media is too big
VIEW IN TELEGRAM
Представьте: вы приходите домой, а робот уже накрыл ужин при свечах и убрал беспорядок после вчерашней вечеринки. И вы не можете отличить, человек это сделал или машина. Это «физический тест Тьюринга» — новая веха в робототехнике, о которой в своем выступлении рассказал Джим Фан, директор по робототехнике в NVIDIA.
Но почему до сих пор ни один робот не справляется с банановой кожурой на полу, а завтрак с хлопьями получается лишь на твердую тройку?
Проблема - в данных. Если ИИ для языка «питается» текстами из интернета, то роботам нужны данные из реального мира: сигналы управления, физические параметры, обратная связь от движений. Собрать их сложно и дорого. В NVIDIA используют телеметрию: операторы в VR-шлемах управляют роботами, записывая каждое действие. Но это медленно, а масштабировать такой сбор данных почти невозможно.
«Это как ископаемое топливо, только хуже — вы сжигаете человеко-часы», — говорит Фан.
Очевидное решение — использовать симуляции. NVIDIA запустила проект Dr. Eureka, где роботов учат в виртуальных мирах. Например, робособака учится балансировать на мяче, а гуманоид осваивает ходьбу за два часа симуляции вместо десяти лет проб и ошибок. Для этого запускают 10 000 параллельных сред с разной гравитацией, трением и весом (это называют «рандомизацией домена»). Если нейросеть справляется в миллионе вариаций, она справится и в реальности.
Но симуляции, к сожалению, не панацея. Традиционные методы требуют ручной настройки каждого объекта. Тут на помощь приходят генеративные модели: Stable Diffusion создает текстуры, ИИ генерирует 3D-сцены, а язык XML пишется через запросы к нейросети. Так появился фреймворк Robocasa — «цифровой двойник» реального мира, где всё, кроме робота, создано алгоритмами. Даже видео с роботом, играющим на укулеле, — фейк, сгенерированный видео-диффузионной моделью.
Ключевой прорыв - модель GROOT, которую NVIDIA открыла для сообщества. Она преобразует изображения и команды в движения, управляя роботом «из коробки». GROOT N1 ловко наливает шампанское или сортирует детали на конвейере. А все благодаря компактной архитектуре, всего 1.5 млн параметров, что меньше, чем у многих мобильных приложений.
Что дальше? Фан говорит о «физическом API» — слое, который превратит роботов в универсальных исполнителей. Представьте: вы запрашиваете навык «приготовить ужин от Мишлен» через облако, и робот делает это без программирования. Или роботы-курьеры сами перестраивают логистику, общаясь через язык действий.
«Все, что движется, станет автономным», — цитирует Фан CEO NVIDIA Дженсена Хуанга.
Главное препятствие кроется в этапе перехода от «цифровых близнецов» к нейросетевым симуляциям («цифровым кочевникам»), которые смогут предсказывать миллионы сценариев. Тут уже не хватит классических методов - нужны гибридные системы, где физика сочетается с генеративными моделями. И судя по темпам (за год нейросети научились реалистично имитировать жидкости и деформации), будущее ближе, чем кажется.
Так когда же мы пройдем физический тест Тьюринга? Возможно, это случится в один из обычных вторников — без анонсов и громких презентаций, как это произошло с языковыми моделями. И тогда роботы станут невидимым фоном жизни, как электричество или Wi-Fi. А мы очень быстро забудем, как жили без них.
@ai_machinelearning_big_data
#AI #ML #Robotics #AIAscent2025 #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Continuous Thought Machine (CTM) - концептуальная архитектура от SakanaAI, вдохновленная биологическими процессами мозга человека. Вместо масштабирования «в ширину» концепт предлагает «глубину» мышления, учитывая временную динамику и имитируя естественные нейронные взаимодействия.
Биологическая аналогия в CTM не случайна. Волны активности в CTM напоминают процессы в коре мозга, где синхронизация нейронов играет ключевую роль в обработке информации. Это не точная имитация природы, но шаг к системам, которые решают задачи через внутренние динамические состояния, а не через гигантские объемы данных.
Ядро CTM - это 2 ключевых механизма. Во-первых, каждый "нейрон" здесь имеет собственные параметры для анализа истории входящих сигналов. Это похоже на то, как биологические нейроны адаптируются к контексту, запоминая предыдущие импульсы.
Во-вторых, архитектура использует синхронизацию активности нейронов как основу для принятия решений. Представьте, что нейроны «договариваются» между собой через временные паттерны активности — именно это и становится языком, на котором CTM интерпретирует данные.
CTM строится на рекуррентной обработке временных паттернов. Каждый нейрон обновляет свое состояние через персональную MLP, которая анализирует историю пре-активаций — выходов «синаптической» модели, объединяющей предыдущие состояния и данные через внимание.
Синхронизация вычисляется как взвешенное скалярное произведение пост-активаций с экспоненциальным затуханием, где параметр "забывания прошлых взаимодействий"обучается, контролируя вклад временных шагов.
Выходы модели формируются проекцией синхронизации, а адаптивность достигается динамическим выбором критических тиков через минимизацию потерь и максимизацию уверенности.
Эксперименты показали, что такой подход работает не только в теории. На ImageNet-1K CTM демонстрирует точность 72.47% (top-1), а ее внимание плавно перемещается по изображению, фокусируясь на ключевых деталях, также, как человек рассматривает объект.
Самый интересный эксперимент - решение лабиринтов. Без позиционных эмбедингов модель строит внутреннюю «карту», анализируя структуру шаг за шагом, и даже обобщает знания на лабиринты большего размера. Это косвенно доказывает, что CTM способна к планированию, а не просто запоминанию паттернов.
CTM умеет экономить ресурсы: для простых задач (классификации очевидных изображений) она останавливает вычисления раньше, а для сложных — «думает» дольше. Это происходит без явных инструкций.
В качестве примера: в задаче сортировки чисел модель тратит больше «мысленных шагов» на сложные перестановки, а в вычислении четности последовательности обучается стратегиям, напоминающим алгоритмическую логику.
Пока CTM не SOTA, но она открывает возможности применения в RL-средах (как конкурент LSTM), а в калибровке предсказаний даже превосходит человеческую точность на CIFAR-10. Архитектура не привязана к определенному типу данных, она работает с изображениями, последовательностями и текстом (хотя на NLP ее масштабно не тестировали).
В открытом доступе на Github опубликован код практической демонстрации CTM в задачах классификации ImageNet, решения двумерных лабиринтов, сортировку, вычисления четности, QA и задачи RL. Датасеты и тестовые модели доступны по запросу через форму Google Drive.
@ai_machinelearning_big_data
#AI #ML #CTM #SakanaAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Данная история основана на цикле книг «Дневники киллербота»: андроид получает сознание и учится быть человеком, чтобы смотреть сериалы и развлекаться, а не только убивать.
Премьера сотворится — 16 мая.
#news #ai #ml #apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔍 Что такое AssetGen 2.0?
AssetGen 2.0 — это новый фреймворк-от способный создавать высококачественные 3D-модели и текстуры на основе текстовых или визуальных запросов. Она объединяет два компонента:
- 3D-меши: создаются с использованием одностадийной диффузионной модели, обеспечивающей высокую детализацию и геометрическую точность.
Текстуры: генерируются с помощью модели TextureGen, которая обеспечивает высокое качество и согласованность текстур.
🆚 Улучшения по сравнению с AssetGen 1.0
Одностадийная генерация: AssetGen 2.0 использует одностадийную диффузионную модель, что позволяет напрямую создавать 3D-объекты из текстовых или визуальных запросов, улучшая качество и сокращая время генерации.
Повышенная детализация: новая архитектура обеспечивает более высокую детализацию и точность геометрии по сравнению с предыдущей версией.
Улучшенные текстуры: TextureGen обеспечивает более высокое качество текстур с улучшенной согласованностью между различными видами объекта.
🌍AssetGen 2.0 уже используется внутри компании для создания 3D-миров и будет доступна для разработчиков Horizon позже в этом году. Планируется также расширение возможностей модели для генерации целых 3D-сцен на основе текстовых или визуальных запросов.
🔗 Подробнее
@data_analysis_ml
AssetGen 2.0 — это новый фреймворк-от способный создавать высококачественные 3D-модели и текстуры на основе текстовых или визуальных запросов. Она объединяет два компонента:
- 3D-меши: создаются с использованием одностадийной диффузионной модели, обеспечивающей высокую детализацию и геометрическую точность.
Текстуры: генерируются с помощью модели TextureGen, которая обеспечивает высокое качество и согласованность текстур.
🆚 Улучшения по сравнению с AssetGen 1.0
Одностадийная генерация: AssetGen 2.0 использует одностадийную диффузионную модель, что позволяет напрямую создавать 3D-объекты из текстовых или визуальных запросов, улучшая качество и сокращая время генерации.
Повышенная детализация: новая архитектура обеспечивает более высокую детализацию и точность геометрии по сравнению с предыдущей версией.
Улучшенные текстуры: TextureGen обеспечивает более высокое качество текстур с улучшенной согласованностью между различными видами объекта.
🌍AssetGen 2.0 уже используется внутри компании для создания 3D-миров и будет доступна для разработчиков Horizon позже в этом году. Планируется также расширение возможностей модели для генерации целых 3D-сцен на основе текстовых или визуальных запросов.
🔗 Подробнее
@data_analysis_ml
Google DeepMind представили AlphaEvolve — агент на базе Gemini, способный автоматически генерировать новые алгоритмы и находить оптимальные решения сложных задач.
🔘 Генерирует быстрые алгоритмы умножения матриц
🔘 Находит новые решения математических задач
🔘 Оптимизирует работу дата-центров, чипов и обучения ИИ модель за счёт сгенерированный алгоритмов
1) Генерация идей с помощью LLMs: Модель Gemini анализирует существующие подходы к решению задачи и предлагает новые алгоритмические идеи, используя свой широкий контекст и знания.
2) Автоматическая оценка: Каждый предложенный алгоритм проходит через систему автоматической оценки, которая измеряет его эффективность, точность и другие ключевые метрики, позволяя объективно сравнивать различные решения.
3) Эволюционное улучшение: AlphaEvolve применяет эволюционные методы, такие как мутация и рекомбинация, чтобы постепенно улучшать алгоритмы, объединяя лучшие элементы из различных решений и отбрасывая менее эффективные варианты.
Этот подход уже продемонстрировал свою эффективность: AlphaEvolve смог обнаружить новые, более эффективные алгоритмы умножения матриц, превосходящие предыдущие достижения, такие как AlphaTensor. Это открывает возможности для оптимизации вычислений в дата-центрах, проектировании чипов и обучении ИИ-моделей.
Google также применили AlphaEvolve к более чем 50 открытым задачам в области:
✍️ математического анализа,
📐 геометрии,
➕ комбинаторики и
🔂 теории чисел — включая задачу о числе поцелуев (kissing number problem).
🔵 В 75% случаев агент открыл лучшее из известных решений.
🔵 В 20% случаев он улучшил ранее известные решения, тем самым сделав новые открытия.
Доступ пока не дают, но выглядит очень интересно.
@ai_machinelearning_big_data
📎 Подробнее
#google #DeepMind
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
OpenAI представляет Codex — облачного агента для генерации кода, способного выполнять множество задач параллельно.
В основе — модель codex-1.
🧠 Ключевые особенности:
• Codex работает прямо в браузере
• Поддерживает многозадачность: можно одновременно проверять код, задавать вопросы и переключаться между задачами
• Построен на **новой модели Codex-1** — самой мощной модели для кодинга от OpenAI
• Интеграция с GitHub — можно подключить свой аккаунт, и агент будет работать с вашими репозиториями
🚀 Codex — это шаг в сторону полуавтоматизированной разработки, где ИИ способен выполнять рутинную и аналитическую работу без постоянного контроля со стороны разработчика.
📅 Запуск ожидается уже сегодня.
https://openai.com/index/introducing-codex/
@ai_machinelearning_big_data
#OpenAI #Codex #AI #CodeAutomation #DevTools
В основе — модель codex-1.
🧠 Ключевые особенности:
• Codex работает прямо в браузере
• Поддерживает многозадачность: можно одновременно проверять код, задавать вопросы и переключаться между задачами
• Построен на **новой модели Codex-1** — самой мощной модели для кодинга от OpenAI
• Интеграция с GitHub — можно подключить свой аккаунт, и агент будет работать с вашими репозиториями
🚀 Codex — это шаг в сторону полуавтоматизированной разработки, где ИИ способен выполнять рутинную и аналитическую работу без постоянного контроля со стороны разработчика.
📅 Запуск ожидается уже сегодня.
https://openai.com/index/introducing-codex/
@ai_machinelearning_big_data
#OpenAI #Codex #AI #CodeAutomation #DevTools
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🎭 "Клуни" обманул на миллион: дипфейк актёра развёл фанатку из Аргентины
Аргентинская женщина стала жертвой мошенников, которые в течение шести недель выдавали себя за Джорджа Клуни. Используя дипфейк-ролики, они вели с ней переписку, убеждая, что это настоящий актёр.
💬 "Клуни" якобы собирался разводиться и обещал устроить её на работу — но сначала попросил денег. Обещания продолжались, а переводы не прекращались.
💸 Когда женщина поняла, что её обманывают, было уже поздно: она потеряла более 10 000 фунтов (около 1 млн рублей).
🧠 Напоминание: в эпоху нейросетей и дипфейков не всё, что выглядит реалистично — настоящее.
No money — no honey.
#ai #news
Аргентинская женщина стала жертвой мошенников, которые в течение шести недель выдавали себя за Джорджа Клуни. Используя дипфейк-ролики, они вели с ней переписку, убеждая, что это настоящий актёр.
💬 "Клуни" якобы собирался разводиться и обещал устроить её на работу — но сначала попросил денег. Обещания продолжались, а переводы не прекращались.
💸 Когда женщина поняла, что её обманывают, было уже поздно: она потеряла более 10 000 фунтов (около 1 млн рублей).
🧠 Напоминание: в эпоху нейросетей и дипфейков не всё, что выглядит реалистично — настоящее.
No money — no honey.
#ai #news
🧠 Бесплатный курс от Hugging Face: Model Context Protocol (MCP)
Hugging Face запустили обучающий курс по Model Context Protocol (MCP) — это современный стандарт для взаимодействия между ИИ-моделями, внешними API, пользовательским вводом и контекстом. Курс идеально подойдёт разработчикам, ML-инженерам и всем, кто хочет строить мощные, интерактивные LLM-приложения.
🔍 Что ты узнаешь:
• 🧩 Как работает архитектура MCP
• 🧰 Как использовать официальные MCP SDK на Python и TypeScript
• 🛠 Как собрать своё MCP-приложение с Gradio и Hugging Face Spaces
• 🎯 Как пройти сертификацию и получить подтверждение своих навыков
📚 Содержание курса:
1. Введение в MCP и структуру курса
2. Архитектура и ключевые компоненты MCP
3. Создание первого MCP-приложения
4. Продвинутые фичи и интеграции
5. Бонусы: дополнительные примеры, кейсы, best practices
💡 Что нужно для старта:
• Опыт с Python или TypeScript
• Понимание API, LLM и разработки
• Аккаунт на Hugging Face
• Желание строить умные и гибкие AI-интерфейсы
👥 Комьюнити:
Присоединяйся к Discord-серверу Hugging Face, чтобы общаться с разработчиками и проходить курс в компании других участников.
➡️ Перейти к курсу
Hugging Face запустили обучающий курс по Model Context Protocol (MCP) — это современный стандарт для взаимодействия между ИИ-моделями, внешними API, пользовательским вводом и контекстом. Курс идеально подойдёт разработчикам, ML-инженерам и всем, кто хочет строить мощные, интерактивные LLM-приложения.
🔍 Что ты узнаешь:
• 🧩 Как работает архитектура MCP
• 🧰 Как использовать официальные MCP SDK на Python и TypeScript
• 🛠 Как собрать своё MCP-приложение с Gradio и Hugging Face Spaces
• 🎯 Как пройти сертификацию и получить подтверждение своих навыков
📚 Содержание курса:
1. Введение в MCP и структуру курса
2. Архитектура и ключевые компоненты MCP
3. Создание первого MCP-приложения
4. Продвинутые фичи и интеграции
5. Бонусы: дополнительные примеры, кейсы, best practices
💡 Что нужно для старта:
• Опыт с Python или TypeScript
• Понимание API, LLM и разработки
• Аккаунт на Hugging Face
• Желание строить умные и гибкие AI-интерфейсы
👥 Комьюнити:
Присоединяйся к Discord-серверу Hugging Face, чтобы общаться с разработчиками и проходить курс в компании других участников.
➡️ Перейти к курсу
В ElevenLabs запустили бесплатные пробные периоды для популярных инструментов — от озвучки текста до генерации картинок.
Что вы получите:
– Доступ в ElevenLabs на 3 месяца;
– Freepik с кредитами на $50;
– Mistral AI с кредитами на $25;
– Notion AI на полгода.
Получаем доступ по ссылке.
Что вы получите:
– Доступ в ElevenLabs на 3 месяца;
– Freepik с кредитами на $50;
– Mistral AI с кредитами на $25;
– Notion AI на полгода.
Получаем доступ по ссылке.
Соучредитель OpenAI Илья Суцкевер предлагал построить бункер Судного дня, который мог бы защитить ведущих ресерчеров компании в случае «конца света», вызванного выпуском AGI.
Об этом рассказывает Карен Хао в своей книге "Empire of AI: Dreams and Nightmares in Sam Altman's OpenAI".
Илья Суцкевер, долгое время считающийся мозгом ChatGPT, сделал комментарий во время встречи с ключевыми учеными компании в 2023 году:
«Как только мы все попадем в бункер...», — сказал г-н Суцкевер, но его перебил сбитый с толку коллега: «Простите, в бункер?»
На что он ответил: «Мы обязательно построим бункер, прежде чем выпустим AGI».
Согласно отрывкам из книги, опубликованным в The Atlantic , это был не первый и не единственный раз, когда Илья затронул эту тему. Два других источника ранее также сообщали Карен Хао, что он регулярно ссылался на бункер во внутренних обсуждениях.
@ai_machinelearning_big_data
#ai #ml #news
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
xAI дополнила свой Grok API новой функцией Live Search, которая позволяет искусственному интеллекту получать доступ к данным в режиме реального времени из соцсети X (бывший Twitter), интернета и актуальных новостей.
API Live Search доступен бесплатно в бета-версии до 5 июня 2025 года. xAI заверяет, что это обновление существенное улучшает способности Grok к рассуждениям и поиску данных.
docs.x.ai
ByteDance-Seed выпустили BAGEL — универсальную мультимодальную модель с 7 млрд. активных и 14 млрд. общих параметров, которая сочетает генерацию, редактирование и анализ текста, изображений и видео.
BAGEL может создавать фотореалистичные изображения, предсказывать кадры, менять стили и даже «мыслить» перед генерацией, улучшая детализацию и логику выводов. Архитектура на основе Mixture-of-Transformer-Experts (MoT) разделяет обработку визуальных и семантических данных, что повышает точность редактирования — например, сохранение идентичности объектов при сложных правках.
В тестах BAGEL обходит многие открытые модели: 2388 баллов в MME (визуальное понимание) и 0.88 в GenEval (генерация изображений). При этом «интеллектуальное» редактирование с CoT почти догоняет Gemini 2.0.
Веса - на HuggingFace, техотчет - на Arxiv, код - на Github, попробовать в демо можно тут.
bagel-ai.org
По данным утечек от известного инсайдера Kopite, NVIDIA готовит к производству видеокарту RTX 5080 Super. Модель получит 24 ГБ памяти GDDR7 — на 50% больше, чем у базового RTX 5080, благодаря 3 ГБ модулям. Несмотря на тот же 256-битный интерфейс и 10 752 CUDA-ядра, пропускная способность памяти вырастет до 1 ТБ/с (+6,6%), а TGP в районе 400 Вт.
Цена RTX 5080 Super, по оценкам, составит $1000–1500. Пока неясно, повторит ли NVIDIA стратегию RTX 4080 Super со снижением цены, но в текущих рыночных условиях на это рассчитывать сложно.
tomshardware.com
Stability AI выпустила обновление своей модели — Stable Video 4D, версию 2.0 (SV4D 2.0), которая упрощает создание динамических 4D-ассетов для игр, кино и виртуальных миров. Новая модель генерирует более четкие и согласованные объекты в движении, используя всего одно объектно-ориентированное видео — без сложных мультикамерных сетапов или предобработки.
В 2.0 переработали архитектуру, теперь она включает 3D-внимание для анализа пространства и времени, что снижает артефакты даже в динамичных сценах. Модель обучалась поэтапно: сначала на статике, потом — на движении. По тестам, SV4D 2.0 лидирует в бенчмарках LPIPS, FVD и FV4D, обгоняя DreamGaussian4D и SV3D по согласованности ракурсов и плавности анимации.
Модель доступна под лицензией Stability AI Community License на HuggingFace, код - на Github.
stability.ai
AIOZ AI — децентрализованная платформа для торговли моделями ИИ и наборами данных, работающая на инфраструктуре DePIN. Она позволяет разработчикам и компаниям загружать, монетизировать и использовать ресурсы в распределенной сети, сохраняя контроль над своими активами.
Платформа разделена на этапы: уже доступны базовые функции маркетплейса, а в будущем добавят поддержку крупных файлов, API-интеграции и возможность обучения моделей в сети DePIN. Участники смогут получать вознаграждения за использование их ресурсов, а токенизация активов станет следующим шагом.
inferencegrid.ai
Айв займётся разработкой нового поколения аппаратных продуктов на базе ИИ внутри OpenAI.
Компания собирается конкурировать с всеми крупнейшими технологическими гигантами.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
На мероприятии Code /w Claude CEO Anthropic презентовал Claude 4 Opus и Claude Sonnet 4.
Обе модели поддерживают расширенное мышление: чередуют анализ и использование инструментов веб-поиска, а также выполняют задачи параллельно.
Для разработчиков появилась интеграция с VS Code, JetBrains и GitHub Actions — правки от Claude теперь отображаются прямо в редакторе. В бета-режиме можно подключать SDK для создания собственных агентов.
По словам партнеров: GitHub и Replit, Opus 4 понимает сложные кодбазы, а Sonnet 4 идеален для повседневных задач. Например, в GitHub Copilot его уже тестируют как основу для нового агента.
В тарифные планы Pro, Max, Team и Enterprise Claude включены обе модели и расширенное мышление, а Sonnet 4 также доступен для бесплатных пользователей.
Обе модели доступны в Anthropic API, Amazon Bedrock и Google Cloud's Vertex AI. Ценообразование остается неизменным по сравнению с предыдущими моделями Opus и Sonnet: Opus 4 - $15/$75 за миллион токенов (ввод/вывод), Sonnet 4 - $3/$15.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM