То есть всякому кватерниону единичной длины q сопоставляется вращение трёхмерного пространства {bi+cj+dk} чисто мнимых кватернионов.
Причём это отображение почти взаимно-однозначно — единственное, что в q можно поменять, это знак. (Что не очень сложно проверить.)
Поэтому вращение трёхмерного пространства кодируется кватернионом единичной длины, заданным однозначно с точностью до знака. Иными словами, группа S^3 двулистно накрывает группу SO(3).
Поэтому вращение трёхмерного пространства кодируется кватернионом единичной длины, заданным однозначно с точностью до знака. Иными словами, группа S^3 двулистно накрывает группу SO(3).
И — вот такое вполне применяется для задания/хранения ориентации что для спутников, что в видеоиграх.
В отличие от углов Эйлера — "курс, тангаж, крен" — тут нет направления, где будет "деление на ноль" (у летящего вертикально вверх истребителя курса нет), легко считается композиция (перемножить кватернионы, и вся недолга).
В отличие от матриц — по крайней мере, ошибки округления (если экономить память) не уведут нас с множества ортогональных матриц, и не будет вопроса, "как бы получше выбрать ближайшую ортогональную матрицу", когда ошибки накопятся.
В отличие от углов Эйлера — "курс, тангаж, крен" — тут нет направления, где будет "деление на ноль" (у летящего вертикально вверх истребителя курса нет), легко считается композиция (перемножить кватернионы, и вся недолга).
В отличие от матриц — по крайней мере, ошибки округления (если экономить память) не уведут нас с множества ортогональных матриц, и не будет вопроса, "как бы получше выбрать ближайшую ортогональную матрицу", когда ошибки накопятся.
Кстати — вот если умножать слева и справа на разные кватернионы (и справа — на обратный),
то получается гомоморфизм
S^3 x S^3 -> SO(4),
потому что умножения слева и справа коммутируют.
S^3 x S^3 -> SO(4),
потому что умножения слева и справа коммутируют.
И несложно увидеть, что образ у него всё, а ядро — это только (1,1) и (-1,-1). И вот ещё одно двулистное накрытие (а заодно разложение алгебры Ли so(4) в прямую сумму двух копий so(3)).
Так вот, вернёмся наконец к нашим четырёхмерным правильным многогранникам. Чтобы задать многогранник, достаточно задать его вершины — и их естественно выбирать на той самой единичной сфере в R^4 = H.
Так вот — давайте возьмём группу вращений правильного тетраэдра. Она действует чётными перестановками его вершин — поэтому в ней 12 элементов. (Кстати, хорошее упражнение это перечислить их, ничего не забыв!)
И давайте возьмём у неё полный прообраз при отображении S^3->SO(3). Получим 24 точки на единичной сфере в четырёхмерном пространстве. И мы их уже видели:
А теперь возьмём вместо тетраэдра — икосаэдр или додекаэдр, благо, из-за их двойственности группа вращений у них одна и та же.
Группа вращений у додекаэдра состоит из 12*5=60 элементов: любую грань можно перевести в любую, а дальше есть 5 вариантов поворотов.
Собственно, как группа она изоморфна A_5, группе чётных перестановок 5 элементов, и есть красивый ответ на вопрос "а какие 5 элементов переставляются": это 5 вписанных в додекаэдр кубов.
Вот тут изображён один такой куб —
https://commons.wikimedia.org/wiki/File:Cube_in_dodecahedron.png — а любая диагональ в грани дальше однозначно достраивается, поэтому их 5.
https://commons.wikimedia.org/wiki/File:Cube_in_dodecahedron.png — а любая диагональ в грани дальше однозначно достраивается, поэтому их 5.
commons.wikimedia.org
File:Cube in dodecahedron.png - Wikimedia Commons
(Кстати, это ещё и способ рисовать додекаэдр — сначала нарисовать куб, а потом на каждую его грань приделать по согласованной "крыше дома")
Ну так вот — у нас есть замечательная группа из 60 вращений. Давайте у неё возьмём прообраз в S^3 — получится очень симметричный набор из 120 точек. Это и есть 120 вершин правильного четырёхмерного 600-гранника!
Математические байки
Самые красивые картинки правильных 4-мерных многогранников появляются в четвёртой главе, вот тут — https://youtu.be/74yIvy0F1bk?t=6m40s . А ещё два года назад Женя Смирнов читал в ЛШСМ курс про правильные многогранники — https://www.mccme.ru/dubna/2018/co…
Наконец, двойственный к нему — 120-гранник; его изображение — один из моих любимых кадров фильма Жиса, Лейса и Альвареса, который я тут уже упоминал:
Математические байки
Ну так вот — у нас есть замечательная группа из 60 вращений. Давайте у неё возьмём прообраз в S^3 — получится очень симметричный набор из 120 точек. Это и есть 120 вершин правильного четырёхмерного 600-гранника!
Кстати: если у нас на трёхмерной сфере задана функция, которую мы хотим проинтегрировать (или, что то же самое с точностью до множителя, усреднить), можно приблизить её среднее средним арифметическим по удачно расположенным точкам. Так вот — усреднение по этим 120 вершинам оказывается очень точным приближением: http://mi.mathnet.ru/mz863 (да, а Андреев тут — тот самый, который "Математические этюды").