Математические байки – Telegram
Математические байки
4.3K subscribers
1.44K photos
15 videos
27 files
914 links
Рассказы про разную математику.

Архив: http://dev.mccme.ru/~merzon/mirror/mathtabletalks/
Download Telegram
Кстати — без запрета на повороты частей ответ на вопрос, когда из одной фигуры "ножницами" можно сделать другую, даёт теорема Бойяи--Гервина. А именно — два многоугольника равносоставлены тогда и только тогда, когда у них совпадают площади. Часть "только тогда" очевидна — а вот для "тогда" нужно поработать; правда, доказательство получается вполне обозримым.
Первый раз я его, кажется, услышал на лекции А. А. Гайфуллина два года назад на ЛШСМ — http://www.mathnet.ru/present21265 ; удивительно поздно, с учётом того, что рассуждение абсолютно школьное — но как-то раньше я факт знал, а доказательство посмотреть руки не доходили.

Собственно, понятно, что равносоставленность это отношение транзитивное (если A~B и B~C, то A~C: из аналогии с ножницами это очень хорошо видно).
Поэтому можно выбрать единицу длины и доказывать, что любая фигура равносоставлена прямоугольнику размера 1xS.
А поскольку любой многоугольник можно разрезать на треугольники — то достаточно это доказать для всех треугольников. Наконец, треугольник просто превратить в параллелограмм:
Следующее упражнение, что два параллелограмма с равной площадью и общим основанием равносоставлены. Пока они не сильно наклонены, можно обойтись вообще одним переставляемым треугольником:
А в общем случае можно либо нарезать на тонкие горизонтальные слои, или (что мне нравится больше) наклеить параллелограммы на цилиндр так, чтобы общее основание превратилось в окружность-параллель этого цилиндра. И тогда наклейка будет "в один слой", а граница одного из параллелограммов покажет, где нужно разрезать другой.
Кстати, можно я вспомню задачу про верблюда?
самый лучший способ увидеть решение — паркет из верблюдов
Остаётся совсем чуть-чуть (и это, мне кажется, самый изящный шаг доказательства): если начать "перекашивать" параллелограмм — его вторая сторона будет расти. Значит, в какой-то момент она станет целой — равной какому-то k. После чего можно взять за основание уже её — и превратить параллелограмм в прямоугольник k x L, а его уже, разрезав k как 1+1+...+1 — в прямоугольник 1 x S.
Всё! Треугольник площади S равносоставлен прямоугольнику 1 x S — а значит, то же правда и про любой многоугольник. Вот так теорема Бойяи--Гервина и доказывается.
Давайте я добавлю пару ссылок. Другое доказательство есть в "миниатюрах" Математических этюдов:
https://www.etudes.ru/ru/sketches/hilbert-third-problem/
(а почему "третья проблема Гильберта, я сейчас скажу пару слов").
Там рассуждение проходит через квадраты — и через (заодно) доказывающее теорему Пифагора объединение двух квадратов в один:
Это же рассуждение в калейдоскопе "Кванта" (а также несколько явных красивых примеров равносоставленности) — http://kvant.ras.ru/pdf/2016/2016-02.pdf
(см. с. 34--35 PDF-файла).
про теорему Бойяи–Гервина — а также про теорему Дена (показывающую, что, в отличие от многоугольников, равновеликие многогранники не всегда равносоставленны) — можно еще прочитать в брошюре В.Г.Болтянского, http://mathedu.ru/lib/books/boltyanskiy_ravnovelikie_i_ravnosostavlennye_figury_1956/#38 (и еще про инвариант Дена объясняется в одной из глав «Математического дивертисмента» Табачникова и Фукса)

на этом история не заканчивается: в 1965 году Сидле (Sydler) доказал обратное утверждение: если у многогранников равны и объемы, и инварианты Дена, то они равносоставленны (и эта история оказывается связанной с гомологиями групп неожиданно) — про все это рассказывал на ЛШСМ-2018 А.А.Гайфуллин, можно посмотреть видеозаписи:
http://www.mathnet.ru/present21265
http://www.mathnet.ru/present21725
http://www.mathnet.ru/present21726
http://www.mathnet.ru/present21727
http://www.mathnet.ru/present21728

видеолекции выше доступны и для старшеклассников, а люди с чуть более серьезной подготовкой могут также посмотреть обзор L.Hesselholt'а
https://www.math.nagoya-u.ac.jp/~larsh/teaching/F2011_PM/lecture.pdf
В размерности 3 всё не так, как на плоскости. Вопрос о равносоставленности многогранников был третьей проблемой Гильберта, и отрицательный ответ (например, неравносоставленность куба и правильного тетраэдра одинаковых объёмов) следует из наличия дополнительного инварианта, инварианта Дэна.
Интересно, что этому посвящён один из текстов Mathesis-а — https://www.mathesis.ru/book/kagan2/ :