Математические байки – Telegram
Математические байки
4.3K subscribers
1.44K photos
15 videos
27 files
914 links
Рассказы про разную математику.

Архив: http://dev.mccme.ru/~merzon/mirror/mathtabletalks/
Download Telegram
https://youtu.be/1LwkljjLBns
https://youtu.be/cp6eudDomRY
https://youtu.be/r_KqR5tBekQ

«««
Soon after winning the Fields Medal in 1962, a young John Milnor gave these now-famous lectures and wrote his timeless Topology from the Differentiable Viewpoint, which has influenced generations of mathematicians. The lectures, filmed by the Mathematical Association of America (MAA), were unavailable for years but recently resurfaced. With Simons Foundation funding, the Mathematical Sciences Research Institute has produced these digital reproductions as a resource for the mathematics and science communities.

(…)

Lectures by John Milnor, Princeton University, Fall term 1958
Notes by James Munkres — https://www.maths.ed.ac.uk/~v1ranick/papers/difftop.pdf
»»»
http://www.ams.org/notices/201106/rtx110600804p.pdf

«The sequel to these lectures, written several mathematical lives — and a Wolf and an Abel Prize later — is “Differential Topology Forty-six Years Later”»
Давайте я начну обещанный рассказ про степени отображений и про теорему Штурма.

Вот допустим, нам задан какой-нибудь многочлен. С явными — целыми или рациональными — коэффициентами, но не второй-третьей-ну допустим, четвёртой степени, а выше, так что никакой формулы для корней нет. Как можно узнать, сколько у него вещественных корней? Или — сколько у него корней на конкретном отрезке [a,b]?

Собственно, вот конкретный пример: рассмотрим многочлен
P(x) = 2 x^5 - 5 x^4 - 4 x^3 + 22 x^2 - 21 x + 6.
Сколько у него вещественных корней?

Так сразу не скажешь. Даже если построить график — точнее, попросить компьютер это сделать — тоже ответ не то, чтобы сразу очевиден:
Похоже, конечно, что корней три — а может, всё-таки пять, если где-то между 0 и 1.5 корней будет четыре, а не два?
Если сильно увеличить — то становится видно, что корней на том интервале всё-таки два (а всего тем самым три):
Но, скажем, если представить себе прописывание алгоритма для компьютера — то станет немного тоскливо. Потому что надо — выбрать мелкую сетку значений, посмотреть, сколько между ними перемен знака, проконтролировать, знаем ли мы, что на тех отрезках, где перемены знака нет, многочлен с разумной оценкой на производную (или на вторую производную) "не успевает" добежать до нуля и вернуться. А если может успеть — то подразбить интервал на более мелкие шаги, и так повторять "до победы".
И, кстати, на тех, где есть — тоже нужно быть уверенными, что там корень один, а не, скажем, три.
(И я тут ещё пропустил начальный шаг — проверку через алгоритма Евклида для вычисления НОД(P,P'), что у многочлена нет кратных корней; а если вдруг есть — то ещё и это нужно обрабатывать...)

Не то, чтобы написать было совсем неподъёмно — но как-то никакого энтузиазма не возникает. А главное, в таком виде это не получится "подружить" с разными другими применениями из алгебраической геометрии... (Забегая вперёд — с образами полуалгебраических множеств и теоремой об элиминации кванторов.)
Так вот — а нет ли какого-нибудь красивого способа это самое число вещественных корней найти? Оказывается, что есть, и именно это и есть теорема Штурма; и мы на неё сейчас посмотрим — с чуть более топологической точки зрения, чем её обычно рассказывают.
Но сначала — мне понадобится понятие степени отображения.
В простейшем варианте — если у нас есть отображение f:S^1\to S^1 из окружности в окружность, то можно спросить, какое число оборотов (с учётом знака) делает f(x) вдоль окружности-образа, когда x один раз пробегает окружность-прообраз. Это и есть степень deg f.

И как всегда, с ней есть общий принцип из топологии: "если что-то меняется непрерывно и принимает целые значения, то эта величина — константа". В данном случае — степень сохраняется, если отображение f непрерывно менять.
Представьте себе теперь, что вдоль круглого стадиона бежит атлет. А мы должны сказать, сколько кругов он сделал. Понятно, что бежать за ним весьма трудозатратно; гораздо проще встать в одной точке и считать, сколько раз он мимо нас пробежал.

Но считать надо с учётом знака, по или против хода он мимо нас движется. Потому что если атлет пробежит мимо нас, остановится, сделает пять шагов назад, пройдя мимо нас второй раз, а потом побежит опять вперёд, пройдя третий раз, то не надо говорить, что он уже сделал три круга (иначе остальные бегуны могут сильно удивиться).
А с учётом знака всё получается правильно. А именно — если f:S^1\to S^1 это гладкое отображение, а точка p такова, что во всех её прообразах производная f ненулевая (в частности, таких прообразов тогда конечное число), то
deg(f) = \sum_{x: f(x)=p} sign f'(x).
Вот, например, отображение степени 2. У отмеченной на оси ординат точки 4 прообраза, в трёх из них f'>0, в одной f'<0, поэтому степень равна
1+1-1+1=2.
Кстати, у точки, которой отвечает начало отрезка на оси ординат (склеенное с концом этого же отрезка — это же окружность), два прообраза, оба с плюсом. И мы опять получаем 1+1=2 — что логично: мы же находим одну и ту же величину deg f, которую уже определили как "число оборотов".
Математические байки
А с учётом знака всё получается правильно. А именно — если f:S^1\to S^1 это гладкое отображение, а точка p такова, что во всех её прообразах производная f ненулевая (в частности, таких прообразов тогда конечное число), то deg(f) = \sum_{x: f(x)=p} sign…
С другой стороны, я мог бы не говорить про "число оборотов", а сразу определить степень как число прообразов с учётом знака. И тогда была бы нужна "проверка корректности": во-первых, почему такая точка p есть (у которой все прообразы с ненулевой производной), а во-вторых, почему две разные точки будут приводить к одному и тому же результату.

И тогда для первой части корректности нужно было бы сказать, что множество тех p, у которых хотя бы в одном прообразе производная f нулевая — иными словами, множество критических значений f — имеет меру ноль.
В некоторых кавычках — потому что его мера оценивается сверху интегралом от |f'| по множеству критических точек — но интегрируем-то мы ноль!
А чуть более аккуратно — покрываем множество критических точек маленькими интервалами с суммой длин, близкой к его мере; когда мы применяем f — длина образа каждого интервала оценивается по теореме Лагранжа, как длина самого интервала * что-то очень маленькое (потому что где-то там f'=0). Так что сумма длин образов оказывается сколь угодно малой — и вот и мера ноль.
А для второй (для совпадения того, что дадут две разные точки p_1 и p_2) — чуть-чуть возмутить f, чтобы прообразы p_1 и p_2 остались почти такими же (в частности — с теми же знаками производной), но все минимумы и максимумы у f стали бы невырожденными и на разных уровнях. И тогда, когда мы "поведём" точку p от p_1 к p_2, всё, что мы будем наблюдать, это как два прообраза с разными знаками производной сливаются и исчезают — или, наоборот, из пустоты появляются два прообраза с разными знаками. И при этом наша сумма не изменяется.
Математические байки
С другой стороны, я мог бы не говорить про "число оборотов", а сразу определить степень как число прообразов с учётом знака. И тогда была бы нужна "проверка корректности": во-первых, почему такая точка p есть (у которой все прообразы с ненулевой производной)…
И вот это определение обобщается сразу на любую размерность. А именно: пусть у нас есть два ориентированных (ориентация уже выбрана) замкнутых (компактных без края) гладких многообразия M и N одной размерности, и гладкое отображение f:M\to N. Тогда степень deg f отображения f определяется так:
- берём точку p на N, у которой для каждого её прообраза x дифференциал df|_x (линейная часть f в точке x) невырожден.
- для каждого её прообраза пишем +1 или -1 в зависимости от того, сохраняет или меняет f рядом с ним ориентацию (иными словами, пишем sign det df|_x)
- складываем всё, что написано.

Опять же, нужна проверка корректности: что такая точка p есть, и что результат не зависит от её выбора. Первое делается аналогично тому, что мы делали на окружности, только с поправкой на многомерность, и называется леммой Сарда : множество критических значений (достаточно) гладкой функции имеет меру ноль.