Математические байки – Telegram
Математические байки
4.3K subscribers
1.44K photos
15 videos
27 files
914 links
Рассказы про разную математику.

Архив: http://dev.mccme.ru/~merzon/mirror/mathtabletalks/
Download Telegram
И инволюция эта очень простая. Давайте возьмём какое-нибудь разбиение n в сумму различных слагаемых и отметим на его диаграмме Юнга как самое маленькое слагаемое, так и "последнюю диагональ":
После чего, если самое маленькое слагаемое не превосходит этой диагонали — отрежем его и перенесём к диагонали, по одной клетке сверху. Скажем, из такого разбиения —
получится вот такое:
И обратно — если диагональ строго меньше наименьшего слагаемого, то отрежем её и перенесём эти клетки вниз, в качестве нового наименьшего слагаемого.
Собственно — вот скриншот из лекции Е. Ю. Смирнова из его курса по перечислительной комбинаторике на Coursera (Image credit: Coursera + HSE + E. Smirnov)
И вот так эта биекция и работает — за исключением тех случаев, когда диагональ доходит аж до самого наименьшего слагаемого, причём или равна ему по длине, или на 1 меньше: тогда её отрезать и убрать вниз не получится.
А это и есть числа в правой части пентагональной теоремы: это же и есть почти совсем правильные пятиугольники, только нарисованные на квадратной решётке, так что получается квадрат + треугольник.
Или так —
И видно, почему между парами чисел действительно расстояния совпадают с номером пары. Давайте я покажу ещё один кадр из того же видео Mathologer-а:
И иллюстрирующая это картинка оттуда же
Да, пентагональная теорема сама по себе там тоже, конечно, есть.
Математические байки
Photo
Да, я не сказал — эта инволюция именная, и называется инволюцией Франклина. Вот тут — в Comptes Rendus — в 1881 году она опубликована; а вот 80-страничная статья J. J. Sylvester and F. Franklin, American Journal of Mathematics, 1882, Vol. 5, No. 1 (1882), pp. 251-330 с отдельно замечательным названием: