Семинар «Алгебра, геометрия и теория чисел»
Когда: суббота 27 сентября
Где: 322 АдмК
Учебный трек (16:00): М. Дусман "Мотивная теория гомотопий"
В докладе, в начале будет краткое напоминание топологии Гротендика. Особое внимание, как примеру, будет уделено топологии Нисневича, благодаря которой может быть построена категория мотивных пространств над полем k, по Морелю Воеводскому. Далее на мотивных пространствах будет определен пучок π_n^{A^1} нестабильных A^1 гомотопических групп, и, если останется время, обсудим функторы реализации.
Современный трек (18:00): А. Айвазьян "Что такое ∞-стек?"
Категория пучков Sh(C, J) на сайте (C, J) — это локализация категории предпучков PSh(C) в определённом классе мономорфизмов J (называемых покрывающими решетами). Возникающие таким образом категории, называемые топосами Гротендика, играют ключевую роль в современной алгебраической геометрии и смежных темах. Когда C — это категория пространств, о пучках можно думать как об обобщённых пространствах.
Однако на рубеже XX–XXI веков «гомотопическая революция» привела к развитию таких областей, как мотивная теория гомотопий, производная алгебраическая геометрия (в последние 10 лет нужно также упоминать как минимум конденсированную математику и производную дифференциальную геометрию), объекты которых обладают свойствами, несовместимыми с рассмотрением их в фреймворке 1-категорий. Самый классический пример — это пространства, точки которых имеют естественные симметрии (такие как орбифолды и пространства модулей), то есть являются группоидом, а не просто множеством. Обобщение пучка со значением в группоидах (вместо множеств) называется стеком, а в ∞-группоидах («пространствах» в терминологии Лури) — ∞-стеком. В докладе я расскажу точное определение, примеры и базовые свойства ∞-стеков.
В зависимости от подготовки аудитории изложение может начаться с напоминаний о классических 1-пучках на сайтах и о (∞, 1)-категориях.
Аннотации прошедших докладов, а также обновления по предстоящим, доступны в таблице https://docs.google.com/spreadsheets/d/1mk-KpzO7tOFuptWrFZbed6atLEqWxbRlgrWthil66kE/edit?usp=drivesdk
Присоединяйтесь к ТГ группе семинара.
Адрес: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.
#ВШМ_АГТЧ
Когда: суббота 27 сентября
Где: 322 АдмК
Учебный трек (16:00): М. Дусман "Мотивная теория гомотопий"
В докладе, в начале будет краткое напоминание топологии Гротендика. Особое внимание, как примеру, будет уделено топологии Нисневича, благодаря которой может быть построена категория мотивных пространств над полем k, по Морелю Воеводскому. Далее на мотивных пространствах будет определен пучок π_n^{A^1} нестабильных A^1 гомотопических групп, и, если останется время, обсудим функторы реализации.
Современный трек (18:00): А. Айвазьян "Что такое ∞-стек?"
Категория пучков Sh(C, J) на сайте (C, J) — это локализация категории предпучков PSh(C) в определённом классе мономорфизмов J (называемых покрывающими решетами). Возникающие таким образом категории, называемые топосами Гротендика, играют ключевую роль в современной алгебраической геометрии и смежных темах. Когда C — это категория пространств, о пучках можно думать как об обобщённых пространствах.
Однако на рубеже XX–XXI веков «гомотопическая революция» привела к развитию таких областей, как мотивная теория гомотопий, производная алгебраическая геометрия (в последние 10 лет нужно также упоминать как минимум конденсированную математику и производную дифференциальную геометрию), объекты которых обладают свойствами, несовместимыми с рассмотрением их в фреймворке 1-категорий. Самый классический пример — это пространства, точки которых имеют естественные симметрии (такие как орбифолды и пространства модулей), то есть являются группоидом, а не просто множеством. Обобщение пучка со значением в группоидах (вместо множеств) называется стеком, а в ∞-группоидах («пространствах» в терминологии Лури) — ∞-стеком. В докладе я расскажу точное определение, примеры и базовые свойства ∞-стеков.
В зависимости от подготовки аудитории изложение может начаться с напоминаний о классических 1-пучках на сайтах и о (∞, 1)-категориях.
Аннотации прошедших докладов, а также обновления по предстоящим, доступны в таблице https://docs.google.com/spreadsheets/d/1mk-KpzO7tOFuptWrFZbed6atLEqWxbRlgrWthil66kE/edit?usp=drivesdk
Присоединяйтесь к ТГ группе семинара.
Адрес: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.
#ВШМ_АГТЧ
🔥10❤2👍1
Forwarded from Кофейный теоретик
Сводили в лес первокурсников ВШМ, пока погода позволяет. Опыт вроде удачный, надеюсь летом сводим их ещё с ночёвкой и, быть может, в полноценный поход.
Студенты у нас хорошие. В академическом смысле это по семинарам было видно. Но тут, в свободной обстановке, это было ещё заметнее.
Играют Летова, Цоя, Дыркина и (отдельный лайк) Щербакова. Пьют немного (стесняются, наверное).
В общем, первый набор ВШМ -- состоялся.
И это классно!
Студенты у нас хорошие. В академическом смысле это по семинарам было видно. Но тут, в свободной обстановке, это было ещё заметнее.
Играют Летова, Цоя, Дыркина и (отдельный лайк) Щербакова. Пьют немного (стесняются, наверное).
В общем, первый набор ВШМ -- состоялся.
И это классно!
🔥31❤🔥12👍6❤4👏1
Добавим к этому, что в подмосковном лесу со студентами сегодня были Андроник Арутюнов, Андрей Рябичев и Андрей Соболевский, а ходили мы в окрестностях станции Подосинки Казанского направления (отдельная благодарность Анне Бессараб, которая вела группу по треку). И вот ещё несколько фоток.
#ВШМ_не_только_бот
#ВШМ_не_только_бот
🔥29❤🔥9❤7👍2🤔1
Семинар Добрушинской лаборатории
Когда: вторник 30 сентября, 16:15
Где: Адм. корпус, ауд.322.
Доклад:
Денис Савельев (МФТИ):
"Об отношениях на ультрафильтрах, лежащих между предпорядками Рудин–Кейслера и Комфорта, часть I.
// On relations on ultrafilters lying between the Rudin–Keisler and Comfort preorders, part I."
В 2010 г. докладчиком был предложен канонический способ расширения алгебраической системы (т.е. множества с произвольными конечноместными операциями и отношениями на нём) ультрафильтрами, обобщающий компактификацию Чеха–Стоуна дискретного пространства. При рассмотрении таких расширений многоместных операций естественно возникают отношения на ультрафильтрах, обобщающие классический предпорядок Рудин–Кейслера (который задается одноместными операциями). Оказывается, что возрастающую цепь этих отношений можно продолжить трансфинитно, причём возникающие отношения будут соответствовать определённым непрерывным бесконечноместным операциям, которые тоже допускают расширения ультрафильтрами. Более того, объединение всех полученных отношений даёт другое хорошо известное отношение на ультрафильтрах — предпорядок Комфорта. Будет показано, как вычисляется композиция этих отношений; как следствие, будет установлен критерий того, когда отношение является предпорядком.
Также будут представлены два теоретико-модельных приложения, значительно обобщающие ранее известные результаты. Первое касается подмоделей ультрарасширений и обобщает наблюдения Гарсия-Феррейры, Хиндмана и Штраусс, относящиеся к предпорядку Комфорта и полугруппам, на отношения рассматриваемого вида и произвольные алгебраические системы. Во втором характеризация Бласса предпорядка Рудин–Кейслера с помощью ультрастепеней распространяется на рассматриваемые отношения с помощью (подходящего варианта) предельных ультрастепеней.
Доклад основан на совместной работе с Н.Л.Поляковым (ВШЭ).
Планируется интернет-трансляция по адресу:
https://telemost.yandex.ru/j/81255480783695
Регистрируйтесь вашей фамилией, а не псевдонимом!
Страницы семинара:
https://sites.google.com/view/dobr-seminar
https://www.mathnet.ru/conf167
Адрес: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.
Если у вас нет пропуска МФТИ, то на входе сообщайте, что идёте на наш семинар, и не забудьте паспорт.
#ВШМ_Добрушинский
Когда: вторник 30 сентября, 16:15
Где: Адм. корпус, ауд.322.
Доклад:
Денис Савельев (МФТИ):
"Об отношениях на ультрафильтрах, лежащих между предпорядками Рудин–Кейслера и Комфорта, часть I.
// On relations on ultrafilters lying between the Rudin–Keisler and Comfort preorders, part I."
В 2010 г. докладчиком был предложен канонический способ расширения алгебраической системы (т.е. множества с произвольными конечноместными операциями и отношениями на нём) ультрафильтрами, обобщающий компактификацию Чеха–Стоуна дискретного пространства. При рассмотрении таких расширений многоместных операций естественно возникают отношения на ультрафильтрах, обобщающие классический предпорядок Рудин–Кейслера (который задается одноместными операциями). Оказывается, что возрастающую цепь этих отношений можно продолжить трансфинитно, причём возникающие отношения будут соответствовать определённым непрерывным бесконечноместным операциям, которые тоже допускают расширения ультрафильтрами. Более того, объединение всех полученных отношений даёт другое хорошо известное отношение на ультрафильтрах — предпорядок Комфорта. Будет показано, как вычисляется композиция этих отношений; как следствие, будет установлен критерий того, когда отношение является предпорядком.
Также будут представлены два теоретико-модельных приложения, значительно обобщающие ранее известные результаты. Первое касается подмоделей ультрарасширений и обобщает наблюдения Гарсия-Феррейры, Хиндмана и Штраусс, относящиеся к предпорядку Комфорта и полугруппам, на отношения рассматриваемого вида и произвольные алгебраические системы. Во втором характеризация Бласса предпорядка Рудин–Кейслера с помощью ультрастепеней распространяется на рассматриваемые отношения с помощью (подходящего варианта) предельных ультрастепеней.
Доклад основан на совместной работе с Н.Л.Поляковым (ВШЭ).
Планируется интернет-трансляция по адресу:
https://telemost.yandex.ru/j/81255480783695
Регистрируйтесь вашей фамилией, а не псевдонимом!
Страницы семинара:
https://sites.google.com/view/dobr-seminar
https://www.mathnet.ru/conf167
Адрес: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.
Если у вас нет пропуска МФТИ, то на входе сообщайте, что идёте на наш семинар, и не забудьте паспорт.
#ВШМ_Добрушинский
👍5
Вчера профессор Университета Торонто и BIMSA Константин Ханин провел для первокурсников ВШМ внеочередной ориентационный семинар «Современная математика», на котором рассказал о развитии теории динамических систем, KPZ-универсальности и ренормализации в математической статистической механике, но главное — о том, как может быть устроен путь молодого математика в науке.
А сегодня в 18:00 на матфаке ВШЭ (ул. Усачева, 6, ауд. 108) Константин Ханин выступает с докладом «Another look at the KPZ problem», в котором речь пойдет о статистическом поведении геодезических случайной римановой метрики на плоскости — альтернативном, геометрическом подходе к KPZ-универсальности.
KPZ — это Кардар, Паризи, Жанг, а не Книжник, Поляков, Замолодчиков! Это был тест на то, вы статфизик или квантовый полевик.
А сегодня в 18:00 на матфаке ВШЭ (ул. Усачева, 6, ауд. 108) Константин Ханин выступает с докладом «Another look at the KPZ problem», в котором речь пойдет о статистическом поведении геодезических случайной римановой метрики на плоскости — альтернативном, геометрическом подходе к KPZ-универсальности.
Wikipedia
Konstantin Khanin
Russian mathematical physicist
👍15