ВШМ МФТИ – Telegram
ВШМ МФТИ
1.16K subscribers
115 photos
1 video
10 files
153 links
Неофициальный канал Высшей школы современной математики
Download Telegram
Семинар Добрушинской лаборатории

Когда: вторник 18 февраля, 16:15
Где: Адм. корпус ауд.322

Обратите внимание на изменение адреса! Это наша новая семинарская комната.

Доклад:

Алексей Лавров (МФТИ),
"Флаговые многообразия Эйнштейна /
Einstein flag manifolds
"

В силу нелинейности уравнений Эйнштейна поиск точных решений является сложной задачей. Одним из важнейших частных случаев, являются уравнения Эйнштейна в вакууме, которые представляют собой нелинейные дифференциальные уравнения на псевдо-риманову метрику. При наличии группы симметрий G многообразия M естественно рассмотреть метрики инвариантные относительно действия этой группы. Если группа G действует транзитивно на M, т.е. M является однородным многообразием группы G, то уравнения Эйнштейна ограниченные на подпространство инвариантных метрик оказываются системой алгебраических уравнений, исследовать которые значительно проще. Более того, в случае флаговых многообразий, алгебраические уравнения задаются полиномами Лорана и к ним применима теория Бернштейна-Кушниренко. С каждым флаговым многообразием можно связать некоторый целочисленный многогранник, нормализованный объем которого является оценкой сверху на число изолированных решений уравнений Эйнштейна. Этот подход был развит в работах М.М.Граева, основные результаты которого будут представлены в докладе. Кроме того, мы обсудим возможные направления обобщения его результатов в свете новых работ, посвященных изучению так называемых космологических политопов.


Страницы семинара:
https://sites.google.com/view/dobr-seminar
https://www.mathnet.ru/conf167

Адрес: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.

Вход в МФТИ только по пропускам или спискам. Поэтому участники БЕЗ пропусков МФТИ пришлите ЗАРАНЕЕ (до понедельника) информацию о себе и не забудьте паспорт.


#ВШМ_Добрушинский
Семинар Добрушинской лаборатории

Когда: вторник 25 февраля, 16:15
Где: Адм. корпус ауд.322.

Доклад:

Виктор Козякин (МФТИ),
"Обобщенный спектральный радиус. II - Гипотеза Лагариаса-Ванга о конечности / Generalized Spectral Radius. II - Lagarias-Wang Finiteness Conjecture"

Будет продолжен обзор результатов по теории обобщенного спектрального радиуса наборов матриц R(M). Исходно R(M) определялся при помощи некоторой предельной процедуры. Однако во всех примерах, которые удалось просчитать в то время (более 30 лет назад), он достигался на некотором конечном шаге этой конструкции, что стимулировало Дж.Лагариаса и Я.Ванга в 1995 году высказать гипотезу об этом.

Данное предположение вызвало определенный энтузиазм исследователей, поскольку давало надежду на разработку "конструктивных" приемов нахождения обобщенного спектрального радиуса. Увы, в 2002 году эта гипотеза была опровергнута (T.Bousch and J.Mairesse). Позднее, с небольшими интервалами появились другие варианты опровержения (V.Blondel, J.Theys and A.Vladimirov, 2003) и (V.Kozyakin, 2005). Все три варианта опровержения достаточно сложны технически и существенно используют методы теории меры, топологии, функционального анализа и теории чисел.

Несмотря на опровержение, данная гипотеза стимулировала многие десятки исследований и в значительной мере повлияла на формирование современного облика данной тематики. Описанию одной из предложенных схем опровержения гипотезы о конечности как раз и будет посвящен доклад. Также будут обсуждаться вычислительные аспекты и некоторые алгоритмы нахождения обобщенного спектрального радиуса и построения соответствующей нормы Барабанова.


Страницы семинара:
https://sites.google.com/view/dobr-seminar
https://www.mathnet.ru/conf167

Адрес: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.

Вход в МФТИ только по пропускам или спискам. Поэтому участники БЕЗ пропусков МФТИ пришлите ЗАРАНЕЕ (до понедельника) информацию о себе и не забудьте паспорт.


#ВШМ_Добрушинский
Также продолжает работу семинар Алгебра, геометрия и теория чисел

#ВШМ_АГТЧ
Сегодня семинар в 18:35 в АдмК 322. Пройдут следующие доклады(абстракты можно найти в таблице):

Учебный: Д. Савкина "Алгебраические множества"

Современный: А. Мятелин "Классы Миллера-Мориты-Мамфорда и
комбинаторные формулы для них"
🔥3
Семинар Добрушинской лаборатории

Когда: вторник 4 марта, 16:15
Где: Адм. корпус ауд.322.
Если удастся наладить трансляцию, сообщим дополнительно.

Доклад:

Денис Савельев (МФТИ),
"Теорема Хиндмана о конечных суммах и её приложение к топологизации алгебр /
Hindman’s finite sums theorem and its application to topologizations of algebras
"

Мы начнем с краткого обзора результатов, связанных с теоремой Хиндмана о конечных суммах и ее обобщений, основанных на идемпотентных ультрафильтрах в ультрарасширениях полугрупп.

Далее будет представлено приложение этих идей к изучению топологий Зарисского и проблеме топологизации универсальных алгебр (восходящей к работам Маркова мл. и получивших развитие в работах Мальцева, Шелаха и других). Будет рассмотрен специальный класс универсальных алгебр, называемых поликольцами (или мультиоператорными кольцами) и включающего такие классические случаи, как абелевы группы, кольца, модули, векторные пространства, дифференциальные алгебры и др.

Планируется показать, что не только топология Зарисского поликолец не дискретна (что для колец было ранее установлено Арнаутовым), но и n-ая степень поликольца с топологией, задаваемой многочленами от n переменных, замкнута и нигде не плотна в его (n+1)-ой степени. Более того, если K - бесконечное поликольцо, то для всякого терма F от n переменных, задаваемое им отображение n-ой степени поликольца K в K замкнуто и нигде не плотно в (n+1)-ой степени K с топологией Зарисского.

Фактически этот результат демонстрирует, что топологии Зарисского поликолец допускают разумное понятие топологической размерности, несмотря на то, что могут быть как не хаусдорфовыми, так и не нётеровыми. Из этого следует, что некоторые (в частности, всех счётные) поликольца топологизируемы тихоновской топологией без изолированных точек.


Страницы семинара:
https://sites.google.com/view/dobr-seminar
https://www.mathnet.ru/conf167

Адрес: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.
Вход в МФТИ только по пропускам или спискам. Поэтому участники БЕЗ пропусков МФТИ пришлите ЗАРАНЕЕ (до понедельника) информацию о себе и не забудьте паспорт.


#ВШМ_Добрушинский
Семинар Добрушинской лаборатории

Когда: вторник 11 марта, 16:15
Где: Адм. корпус ауд.322.

Доклад:

Плахов Александр (ун-т Авейро),
"Об одной экстремальной задаче в биллиардах /
About one extreme problem in billiards
"

Рассматривается биллиард во внешности некоторого тела (ограниченного множества в R^n с кусочно-гладкой границей). В рамках этой модели изучается задача о наименьшем (усредненном) сопротивлении в определенном направлении.

Доказано (Aleksenko & Plakhov, 2009) существование тела с нулевым сопротивлением, а также (используя оптическую аналогию) тела, невидимого в одном направлении.

Известно также (Plakhov & Roshchina, 2011), что тел, имеющих нулевое сопротивление во всех направлениях, а значит, и абсолютно (во всех направлениях) невидимых, не существует. Мы рассматриваем задачу о наименьшем усредненном сопротивлении для тела фиксированного объема, содержащегося в единичной сфере. Эта задача полностью еще не решена.

Используя методы векторнозначной задачи Монжа-Канторовича, найдена нижняя граница значений для усредненного сопротивления как функции от объема тела. Данная работа — совместная с В.Рощиной.


Планируется интернет-трансляция по адресу:
https://telemost.yandex.ru/j/81255480783695
Регистрируйтесь вашей фамилией, а не псевдонимом!

Страницы семинара:
https://sites.google.com/view/dobr-seminar
https://www.mathnet.ru/conf167

Адрес: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.
Вход в МФТИ только по пропускам или спискам. Поэтому участники БЕЗ пропусков МФТИ пришлите ЗАРАНЕЕ (до понедельника) информацию о себе и не забудьте паспорт.


#ВШМ_Добрушинский
Также продолжает работу семинар Алгебра, геометрия и теория чисел

#ВШМ_АГТЧ
Предварительно, завтра будут следующие доклады(абстракты уже есть в таблице):

Учебный: Н.Колесников, "Дивизоры и векторные расслоения"

Современный: А.Кузнецова, "Теорема Громова"
Время пока уточняется, трансляция будет
upd: начало в 18:35, сначала современный доклад, потом учебный
Семинар Добрушинской лаборатории

Когда: вторник 18 марта, 16:15
Где: Адм. корпус, ауд.322.

Доклад:

Лебедев Алексей (МФТИ),
"Кодирование в каналах с мгновенной безошибочной обратной связью /
Channel encoding with instant error-free feedback
"

Рассматривается задача исправления ошибок в каналах без памяти с бесшумной мгновенной обратной связью. Под обратной связью подразумевается возможность у отправителя некоторое количество раз безошибочно узнать, что на данный момент пришло получателю, после чего продолжить передачу, возможно изменив стратегию с учётом полученной информации. Для случаев разного количества применений обратной связи будет найдено максимальное число сообщений, которое возможно передать через заданный канал.


Планируется интернет-трансляция по адресу:
https://telemost.yandex.ru/j/81255480783695
Регистрируйтесь вашей фамилией, а не псевдонимом!

Страницы семинара:
https://sites.google.com/view/dobr-seminar
https://www.mathnet.ru/conf167

Адрес: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.
Вход в МФТИ только по пропускам или спискам. Поэтому участники БЕЗ пропусков МФТИ пришлите ЗАРАНЕЕ (до понедельника) информацию о себе и не забудьте паспорт.


#ВШМ_Добрушинский
Forwarded from 57 School Official
Сегодня в Пятьдесят седьмой состоялась лекция доктора физико-математических наук, профессора РАН, директора Высшей школы современной математики МФТИ Андрея Николаевича Соболевского

Профессор и наши старшеклассники поговорили о выемках и насыпях, транспорте и космологии.

📜 «Мемуар о теории выемок и насыпей» — так называлась опубликованная в 1781 году статья одного из основателей современной геометрии — Гаспара Монжа, которая стала основой лекции.

Вместе с профессором Соболевским наши ребята узнали как Монж решил поставленную им в начале статьи необычную геометрическую задачу.

👏 Кроме того, участники лекции обсудили новый факультет Высшей школы современной математики в МФТИ.

🤝 Благодарим Андрея Николаевича за интереснейшую лекцию!

🙏 За организацию встречи благодарим заместителя директора по математическому образованию Пятьдесят седьмой школы Петра Валентиновича Сергеева.

Ваша 57-я 🧮
👍82🎃1
Семинар Добрушинской лаборатории

Когда: вторник 18 марта, 16:15
Где: Адм. корпус, ауд.322.

Доклад:

Лебедев Владимир (МФТИ),
"Исправление ошибок в недвоичных каналах с обратной связью /
Correcting Errors in Non-Binary Channels with Feedback
"

Рассматривается задача исправления ошибок в q-ичном симметричном канале с бесшумной мгновенной обратной связью. Под обратной связью подразумевается возможность у отправителя некоторое количество раз безошибочно узнать, что на данный момент пришло получателю, после чего продолжить передачу, возможно изменив стратегию с учетом полученной информации. Будет рассмотрен случай, когда доля ошибок линейна по сравнению с кодовой длиной. Кроме того, для q не являющемся степенью простого будут построены аналоги кодов Рида-Соломона, исправляющих t ошибок.


Планируется интернет-трансляция по адресу:
https://telemost.yandex.ru/j/81255480783695
Регистрируйтесь вашей фамилией, а не псевдонимом!

Страницы семинара:
https://sites.google.com/view/dobr-seminar
https://www.mathnet.ru/conf167

Адрес: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.
Вход в МФТИ только по пропускам или спискам. Поэтому участники БЕЗ пропусков МФТИ пришлите ЗАРАНЕЕ (до понедельника) информацию о себе и не забудьте паспорт.


#ВШМ_Добрушинский
Семинар Добрушинской лаборатории

Когда:
вторник 1 апреля, 16:15
Где: Адм. корпус, ауд.322.

Доклад:

Александра Кузнецова (МФТИ),
"Свойства многообразий с автоморфизмом бесконечного порядка / Properties of varieties with automorphism of infinite order"

Пусть X - это комплексное алгебраическое многообразие и f - его алгебраический автоморфизм бесконечного порядка. Тогда можно изучить действие f обратным образом на сингулярных когомологиях f^* : H^2(X, C) —-> H^2(X, C). Мы делим автоморфизмы на следующие три типа
1) f^* имеет собственное значение не равное корню из единицы,
2) f^* унипотентен и имеет нетривиальный жорданов блок,
3) степень f^* является тождественным преобразованием.
Каждый из трёх случаев накладывает значительные условия на геометрию многообразия X. Так, например, показано, что если на поверхности есть автоморфизм 1-ого типа, то она либо рациональна, либо абелева, либо К3, либо это поверхность Энриквеса. Если на поверхности есть автоморфизм 2-ого типа, то она эллиптическая. Если же на поверхности есть автоморфизм 3-его типа, то она либо линейчатая, либо абелева, либо биэллиптическая. Я расскажу об известных теоремах в этой области и о своем результате описывающем многообразия с автоморфизмом бесконечного порядка 3-его типа.


Планируется интернет-трансляция по адресу:
https://telemost.yandex.ru/j/81255480783695
Регистрируйтесь вашей фамилией, а не псевдонимом!

Страницы семинара:
https://sites.google.com/view/dobr-seminar
https://www.mathnet.ru/conf167

Адрес: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.
Вход в МФТИ только по пропускам или спискам. Поэтому участники БЕЗ пропусков МФТИ пришлите ЗАРАНЕЕ (до понедельника) информацию о себе и не забудьте паспорт.


#ВШМ_Добрушинский