Forwarded from ИИ что дальше
Отраслевые LLM: хайп или тренд
О чем говорили хэдлайнеры конференции и в чем сошлись их мнения? Изучил доклады и лично задал вопросы.
👨 Данил Ивашечкин. Head of AI – Норникель
1. AI – инструмент, а не панацея. Инструмент мощный, но требующий экспертизы, данных и понимания процессов.
2. AI усиливает хорошо структурированное и описанное. Если в компании и ее процессах хаос – AI увеличит хаос.
3. AI-прототип не равно продукт. Собрать демо можно за ночь. Сделать надежный и эффективный сервис – задача месяцев работы.
Мнение автора: Очень разделяю. При внедрении LLM в Робота Макса мы за 3 дня сделали прототип и провели демо руководителям Минцифры России, чтобы доказать состоятельность видения. Но сам путь внедрения и отладки занял еще 6 месяцев, несмотря на поддержку крупнейших партнеров из GenAI отрасли.
4. Культура – один из ключевых факторов успешного применения AI. Если сотрудники не понимают ценности и принципы применения AI, скорость внедрения и эффекты будут низкими.
5. METALgpt – 🔥 Норникель выпустит доменную ЛЛМ. Анонсируют кратное сокращение затрат на инференс и лучшее понимание узкой отраслевой терминологии.
👩 Светлана Сафронова. Управляющий директор управления ИИ-решений – Сбер
1. Доходы от применения GenAI растут. 1.1 трлн долларов к 2028 году
2. Рынок GenAI вырастет в 2.4 раза к 2030 году
3. 85% компаний уже внедряют GenAI
4. При этом в России внедрение GenAI только начинается
5. Industry-specific AI – 🔥 Новый тренд. Модели, которые говорят на языке отрасли.
Яркий пример – AlphaFold 3, который специализируется на генерации структуры белков, ДНК и РНК.
💎 Для чего нужны отраслевые модели
Kimi-K2 имеет 1 триллион параметров, кажется при ее обучении должны были применить весь интернет и все доступные данные. А данные двух или трех компаний в узком рыночном сегменте кажутся каплей в море. Но не все так просто.
Представьте, что к вам обратился человек с вопросом: "Как вылечить гастрит". Опытный врач дал вам несколько лучших учебников. Сколько времени уйдет у вас, чтобы найти подробный ответ на вопрос? В этом случае вы играете роль обычной неспецифичной LLM.
Продолжая этот пример. Отраслевая модель – это "врач-гастроэнтеролог". Он знает базу, знает, что не брать во внимание, а что наоборот брать. Что устарело, а что актуально. Зато такой "специалист" сильно хуже ответит вам о рецепте приготовления квашеной капусты.
✅ Плюсы специфичных отраслевых моделей
1. Экономия на "железе". Многосторонняя LLM требует серьезных инвестиций в вычислительную инфраструктуру. Заточенные под узкоспецифичные задачи модели (на 5-20 млрд параметров) работают быстрее и потребляют меньше электричества.
2. Глубина знаний. Специализированные модели лучше управляют доменными знаниями. Медицинская модель не начнет советовать «поменять масло», когда вы спросите про «клапаны» сердца. Она понимает контекст отрасли глубже.
🚧 Проблемы
1. Порог входа. Создание своей модели – процесс долгий и дорогой. Нужны дефицитные специалисты и дорогое железо для дообучения. Хотя, скорее всего, скоро нас ждет масса open source доменных моделей.
2. «Купить или Строить». Применение таких моделей зависит от уровня развития бизнеса. Иногда проще, быстрее и дешевле подключить YandexGPT или GigaChat API, чем дообучать специфичную модель.
🎯 Выводы
1. Будет появляться все больше специфичных LLM. Отраслевая битва не за горами. Модели для юристов, врачей, водителей большегрузов, нефтяной сферы, космоса – в большом разнообразии начнут появляться в 2026 году.
2. Шанс на успех выше у компаний, обладающих доступом к закрытым специфичным данным в большом объеме. Очередь в университеты и исследовательские лаборатории уже начинает собираться.
❤️ Ждем доменные модельки
💔 Это все хайп
🤡 Где мой гастроэнтеролог?
Прямо сейчас я на Conversation AI. Лучшая, на мой взгляд, конференция по AI, которая концентрируется на специалистах, сообществе и бизнес-результатах.
О чем говорили хэдлайнеры конференции и в чем сошлись их мнения? Изучил доклады и лично задал вопросы.
👨 Данил Ивашечкин. Head of AI – Норникель
1. AI – инструмент, а не панацея. Инструмент мощный, но требующий экспертизы, данных и понимания процессов.
2. AI усиливает хорошо структурированное и описанное. Если в компании и ее процессах хаос – AI увеличит хаос.
3. AI-прототип не равно продукт. Собрать демо можно за ночь. Сделать надежный и эффективный сервис – задача месяцев работы.
Мнение автора: Очень разделяю. При внедрении LLM в Робота Макса мы за 3 дня сделали прототип и провели демо руководителям Минцифры России, чтобы доказать состоятельность видения. Но сам путь внедрения и отладки занял еще 6 месяцев, несмотря на поддержку крупнейших партнеров из GenAI отрасли.
4. Культура – один из ключевых факторов успешного применения AI. Если сотрудники не понимают ценности и принципы применения AI, скорость внедрения и эффекты будут низкими.
5. METALgpt – 🔥 Норникель выпустит доменную ЛЛМ. Анонсируют кратное сокращение затрат на инференс и лучшее понимание узкой отраслевой терминологии.
👩 Светлана Сафронова. Управляющий директор управления ИИ-решений – Сбер
1. Доходы от применения GenAI растут. 1.1 трлн долларов к 2028 году
2. Рынок GenAI вырастет в 2.4 раза к 2030 году
3. 85% компаний уже внедряют GenAI
4. При этом в России внедрение GenAI только начинается
5. Industry-specific AI – 🔥 Новый тренд. Модели, которые говорят на языке отрасли.
Яркий пример – AlphaFold 3, который специализируется на генерации структуры белков, ДНК и РНК.
💎 Для чего нужны отраслевые модели
Kimi-K2 имеет 1 триллион параметров, кажется при ее обучении должны были применить весь интернет и все доступные данные. А данные двух или трех компаний в узком рыночном сегменте кажутся каплей в море. Но не все так просто.
Представьте, что к вам обратился человек с вопросом: "Как вылечить гастрит". Опытный врач дал вам несколько лучших учебников. Сколько времени уйдет у вас, чтобы найти подробный ответ на вопрос? В этом случае вы играете роль обычной неспецифичной LLM.
Продолжая этот пример. Отраслевая модель – это "врач-гастроэнтеролог". Он знает базу, знает, что не брать во внимание, а что наоборот брать. Что устарело, а что актуально. Зато такой "специалист" сильно хуже ответит вам о рецепте приготовления квашеной капусты.
✅ Плюсы специфичных отраслевых моделей
1. Экономия на "железе". Многосторонняя LLM требует серьезных инвестиций в вычислительную инфраструктуру. Заточенные под узкоспецифичные задачи модели (на 5-20 млрд параметров) работают быстрее и потребляют меньше электричества.
2. Глубина знаний. Специализированные модели лучше управляют доменными знаниями. Медицинская модель не начнет советовать «поменять масло», когда вы спросите про «клапаны» сердца. Она понимает контекст отрасли глубже.
🚧 Проблемы
1. Порог входа. Создание своей модели – процесс долгий и дорогой. Нужны дефицитные специалисты и дорогое железо для дообучения. Хотя, скорее всего, скоро нас ждет масса open source доменных моделей.
2. «Купить или Строить». Применение таких моделей зависит от уровня развития бизнеса. Иногда проще, быстрее и дешевле подключить YandexGPT или GigaChat API, чем дообучать специфичную модель.
🎯 Выводы
1. Будет появляться все больше специфичных LLM. Отраслевая битва не за горами. Модели для юристов, врачей, водителей большегрузов, нефтяной сферы, космоса – в большом разнообразии начнут появляться в 2026 году.
2. Шанс на успех выше у компаний, обладающих доступом к закрытым специфичным данным в большом объеме. Очередь в университеты и исследовательские лаборатории уже начинает собираться.
❤️ Ждем доменные модельки
💔 Это все хайп
🤡 Где мой гастроэнтеролог?
❤10🤡3👍2🤣1
Forwarded from Искусственный интеллект. Высокие технологии
🚀 Google представила Titans + MIRAS - новую архитектуру, которая даёт ИИ долговременную память 🧠
Теперь модель может обновлять свои знания прямо во время инференса, а не только при обучении.
Что делает Titans важным:
• Классические Transformer-модели хорошо работают с коротким контекстом, но резко дорожают по вычислениям при его увеличении.
• Альтернативы вроде RNN и state-space экономят ресурсы, но теряют детали при сжатии информации.
• Titans предлагает гибрид: краткосрочная память через attention плюс глубокая нейронная память, которая обновляется «на лету» и запоминает только действительно новое.
Как работает память:
Модель записывает в память только те данные, которые оказались неожиданными.
Это помогает:
✔ фильтровать шум
✔ хранить не весь текст, а смысл
✔ удерживать контекст больше 2 миллионов токенов
✔ сохранять линейную скорость обработки
Практические результаты:
- Улучшение reasoning
- Сильные результаты на задачах длинного контекста
- Более устойчивое качество по сравнению с продвинутыми Transformer-подходами
Итог: Titans + MIRAS — это шаг к ИИ, который не просто держит окно контекста, а умеет помнить, забывать и учиться прямо в процессе генерации.
📌 Статья: https://research.google/blog/titans-miras-helping-ai-have-long-term-memory/
📌Видео: https://www.youtube.com/watch?v=mI6mv2c7RK0
@vistehno
Теперь модель может обновлять свои знания прямо во время инференса, а не только при обучении.
Что делает Titans важным:
• Классические Transformer-модели хорошо работают с коротким контекстом, но резко дорожают по вычислениям при его увеличении.
• Альтернативы вроде RNN и state-space экономят ресурсы, но теряют детали при сжатии информации.
• Titans предлагает гибрид: краткосрочная память через attention плюс глубокая нейронная память, которая обновляется «на лету» и запоминает только действительно новое.
Как работает память:
Модель записывает в память только те данные, которые оказались неожиданными.
Это помогает:
✔ фильтровать шум
✔ хранить не весь текст, а смысл
✔ удерживать контекст больше 2 миллионов токенов
✔ сохранять линейную скорость обработки
Практические результаты:
- Улучшение reasoning
- Сильные результаты на задачах длинного контекста
- Более устойчивое качество по сравнению с продвинутыми Transformer-подходами
Итог: Titans + MIRAS — это шаг к ИИ, который не просто держит окно контекста, а умеет помнить, забывать и учиться прямо в процессе генерации.
📌 Статья: https://research.google/blog/titans-miras-helping-ai-have-long-term-memory/
📌Видео: https://www.youtube.com/watch?v=mI6mv2c7RK0
@vistehno
👍7❤6🔥5
Forwarded from Hardware vs Software, или заметки админа
Большое сравнение производительности мобильных чипов
Китайцы собрали более 70 смартфонов с разными процессорами и протестировали их все, собрав в единую табличку.
Вышло довольно интересное сравнение!
За базу в 100 баллов принят Snapdragon 8+ gen 1.
За результат теста CPU взято соотношение 25% однопотока + 75% многопотока Geekbench 6.
GPU: 50% Wild Lige Extreme + 50% Aztec 1440P
Общий результат 65% CPU + 35% GPU
Итог таков:
За 10 лет производительность CPU увеличилась в 9 раз.
Производительность GPU в 22 раза!
Ещё из интересного:
Уже несколько лет подряд мобильные чипы от Apple не самые быстрые в текущем поколении.
Последние пару лет решения от MediaTek по графике чуть быстрее Snapdragon.
Источник
@HWvsSW
Китайцы собрали более 70 смартфонов с разными процессорами и протестировали их все, собрав в единую табличку.
Вышло довольно интересное сравнение!
За базу в 100 баллов принят Snapdragon 8+ gen 1.
За результат теста CPU взято соотношение 25% однопотока + 75% многопотока Geekbench 6.
GPU: 50% Wild Lige Extreme + 50% Aztec 1440P
Общий результат 65% CPU + 35% GPU
Итог таков:
За 10 лет производительность CPU увеличилась в 9 раз.
Производительность GPU в 22 раза!
Ещё из интересного:
Уже несколько лет подряд мобильные чипы от Apple не самые быстрые в текущем поколении.
Последние пару лет решения от MediaTek по графике чуть быстрее Snapdragon.
Источник
@HWvsSW
1🔥6❤2👍1😢1🎉1🙏1
Forwarded from ODS Events
Всем привет!
Встречайте двадцать третий выпуск подкаста "Капитанский мостик". В этом эпизоде обсуждаются последние новости в области робототехники и автоматизации, а также рассматриваются вопросы безопасности смарт-контрактов и их уязвимости. Ведущие подкаста - Валентин Малых и Дмитрий Колодезев.
Смотрите видео на каналах ⤵️
ODS VK Video
ODS YouTube
📩 Присылайте новости для обсуждения в канал "Дата-капитаны" в mattermost (авторизуйтесь через ODS.ai).
Встречайте двадцать третий выпуск подкаста "Капитанский мостик". В этом эпизоде обсуждаются последние новости в области робототехники и автоматизации, а также рассматриваются вопросы безопасности смарт-контрактов и их уязвимости. Ведущие подкаста - Валентин Малых и Дмитрий Колодезев.
Смотрите видео на каналах ⤵️
ODS VK Video
ODS YouTube
📩 Присылайте новости для обсуждения в канал "Дата-капитаны" в mattermost (авторизуйтесь через ODS.ai).
❤1🔥1
Forwarded from Мой Компьютер
Media is too big
VIEW IN TELEGRAM
Китайцы собрали своего терминатора
Гуманоид T800 от EngineAI пинает генерального директора Чжао Туняна.
Мой Компьютер
Гуманоид T800 от EngineAI пинает генерального директора Чжао Туняна.
Мой Компьютер
🔥2🤯1😱1😢1🙏1
Forwarded from Machinelearning
Towardsdatascience запустил декабрьский Адвент-календарь "Machine and Deep Learning", котором предлагает разобраться, что под капотом у ML-процессов.
Фреймворки, например scikit-learn, сделали нас ленивыми. Вызов model.fit стал настолько обыденным, что в эпоху Gen AI кажется, будто обучение модели -это просто подбор параметров.
ML-инженеры жонглируют моделями со сложностью, которая растет в геометрической прогрессии, но при этом они не всегда способны вручную пересчитать и объяснить результаты даже самых простых алгоритмов: линейной регрессии или классификатора.
Модели превратились в "черные ящики", и это огромная проблема, ведь знание, что стоит за каждой функцией, критически важно для понимания процесса.
Фишка в том, что весь материал разбирается в Excel. Звучит диковато, но в этом и есть гений. В отличие от кода, где операции скрыты за функциями, в Excel каждая формула, каждое число, каждый расчет - всё на виду. Никаких "черных ящиков".
Уже вышло 7 статей:
Цикл поможет ответить на вопросы, которые часто остаются за кадром: как грамотно обрабатывать категориальные признаки, когда масштабирование не является правильным решением, и как измерять важность признаков, интерпретируя их напрямую с моделью, минуя модель-агностические пакеты LIME и SHAP.
Серия будет полезна студентам для осмысления формул, и менеджерам для понимания какой ML-метод необходим для бизнеса. А для разработчиков это шанс наконец-то понять теорию.
В общем, это маст-рид для тех, кто хочет перестать быть оператором библиотек и по-настоящему понять, как работает ML-движок.
@ai_machinelearning_big_data
#AI #ML #DL #Tutorial #Excel
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7🔥4❤1🥰1🎉1
Forwarded from Python вопросы с собеседований
🧠 Продвинутая типизация Python, о которой почти никто не знает
Статья показывает, что Python уже давно вышел за рамки простых
Главные идеи:
✔️
✔️
✔️ Python 3.13+ добавляет улучшенный вывод типов и строгие проверки, чтобы типизированный код стал надёжнее.
✔️ Поддержка typed function overloading - теперь можно описывать разные сигнатуры для одной функции, и анализаторы понимают их корректно.
📌 Вывод из статьи - Python типизация уже стала инструментом для архитектуры и предотвращения ошибок, особенно в больших проектах. Но большинство разработчиков использует только её простейший слой.
Кому полезно:
• работаешь с крупными кодовыми базами
• пишешь библиотеки
• хочешь меньше скрытых багов и более предсказуемые refactor-ы
Источник: martynassubonis.substack.com/p/advanced-overlooked-python-typing
Статья показывает, что Python уже давно вышел за рамки простых
List[int] и Optional[str].Главные идеи:
✔️
TypeGuard и новый TypeIs позволяют писать функции, которые доказательно сужают типы - например, проверка превращает Any в конкретный тип для дальнейшего кода.✔️
assert_never из typing помогает ловить случаи, когда ты забыл обработать один из вариантов, что особенно важно в match и сложных условных ветках.✔️ Python 3.13+ добавляет улучшенный вывод типов и строгие проверки, чтобы типизированный код стал надёжнее.
✔️ Поддержка typed function overloading - теперь можно описывать разные сигнатуры для одной функции, и анализаторы понимают их корректно.
📌 Вывод из статьи - Python типизация уже стала инструментом для архитектуры и предотвращения ошибок, особенно в больших проектах. Но большинство разработчиков использует только её простейший слой.
Кому полезно:
• работаешь с крупными кодовыми базами
• пишешь библиотеки
• хочешь меньше скрытых багов и более предсказуемые refactor-ы
Источник: martynassubonis.substack.com/p/advanced-overlooked-python-typing
❤6👍2🔥1
Forwarded from Электричка Технологии
☁️ МГТУ и «Росатом» открыли доступ к облачной квантовой платформе
Специалисты МГТУ им. Баумана, ВНИИА им. Духова и «Росатома» запустили облачную платформу Bauman Octillion. Она позволяет удаленно проводить эксперименты на реальных квантовых сопроцессорах.
🔜 Пользователям предоставляется круглосуточный доступ к квантовому сопроцессору SnowDrop 4Q на базе четырех сверхпроводниковых кубитов. Точность выполнения однокубитных операций на нем составляет 99,89%, двухкубитных — 99,1%.
☝️С 10 по 20 декабря будет открыт тестовый доступ к более мощному устройству — SnowDrop 8Q с восемью кубитами и повышенной точностью. Это позволит ученым тестировать более сложные алгоритмы.
Подпишитесь на Электричку
Специалисты МГТУ им. Баумана, ВНИИА им. Духова и «Росатома» запустили облачную платформу Bauman Octillion. Она позволяет удаленно проводить эксперименты на реальных квантовых сопроцессорах.
☝️С 10 по 20 декабря будет открыт тестовый доступ к более мощному устройству — SnowDrop 8Q с восемью кубитами и повышенной точностью. Это позволит ученым тестировать более сложные алгоритмы.
Подпишитесь на Электричку
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6🔥1
Forwarded from Russian OSINT
Microsoft столкнулась с критическим падением спроса на свои флагманские ИИ-решения и была вынуждена резко сократить внутренние планы продаж. Свежая аналитика FirstPageSage за декабрь 2025 года фиксирует квартальный рост аудитории Google Gemini на уровне 12% против стагнирующих 2% у продукта Copilot. Инсайдеры издания The Information сообщают, что менеджеры «изо всех сил пытаются» закрыть сделки на фоне очевидного технологического превосходства конкурентных больших языковых моделей.
Эксперты подчеркивают, что принятая генеральным директором Сатьей Наделлой стратегия «выпускай сейчас, чини потом» привела к появлению на рынке откровенно слабых продуктов с низкой отказоустойчивостью. В то время как конкуренты выстраивают полный стек собственных технологий, Microsoft рискует потерять статус инноватора и превратиться в обычного посредника на рынке вычислительных мощностей.
У корпорации есть всё еще солидные 14% рынка и огромный корпоративный сегмент, но если катастрофический тренд сохранится, то Copilot потеряет статус второй платформы мира в 2026, уступив место Google Gemini.
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4😁3❤2👍1
Forwarded from AI.Insaf
Недавно завершилось соревнование по памяти в LLM для диалогов – GigaMemory: global memory for LLM (хабр)
Основной метрикой выступала Accuracy.
1-е место (86,6%) Вместо классического RAG для каждого чанка текста модели отдельно задают вопрос: Релевантен ли этот текст заданному вопросу?. Модель должна ответить токеном Да или Нет. По logprobs этих токенов рассчитывается уровень уверенности. В итоге возвращается список чанков, где уверенность выше порога 0.5. На основе этой информации формируется первичный ответ, который затем используется для итогового решения.
2-е место (84,5%) Подход технически сложнее, но концептуально похож на решение победителя.
3-е место (74,5%) Классический RAG с энкодером bge-m3 – этого оказалось достаточно для призового места.
Решения звучат интересно, но кажется в топ 2 решениях, под каждый запрос все прошлые диалоги перечитываются заново, а не берутся из уже готовой краткой выжимки 🤔
Основной метрикой выступала Accuracy.
1-е место (86,6%) Вместо классического RAG для каждого чанка текста модели отдельно задают вопрос: Релевантен ли этот текст заданному вопросу?. Модель должна ответить токеном Да или Нет. По logprobs этих токенов рассчитывается уровень уверенности. В итоге возвращается список чанков, где уверенность выше порога 0.5. На основе этой информации формируется первичный ответ, который затем используется для итогового решения.
2-е место (84,5%) Подход технически сложнее, но концептуально похож на решение победителя.
3-е место (74,5%) Классический RAG с энкодером bge-m3 – этого оказалось достаточно для призового места.
Решения звучат интересно, но кажется в топ 2 решениях, под каждый запрос все прошлые диалоги перечитываются заново, а не берутся из уже готовой краткой выжимки 🤔
Хабр
GigaMemory на AI Journey Contest 2025: итоги
Приветствуем всех! С вами снова ML-команда RnD для B2C SberAI. Этой осенью в рамках AI Journey Contest 2025 мы представили задачу GigaMemory: global memory for LLM. Её цель — создание автономного...
👍3🤯2🥰1
Forwarded from Valuable AI / Валентин Малых
в продолжение обсуждения ICLR: не знаю, кто это начал, может быть это был Грэхэм Ньюбиг (1 картинка), но люди из Pangram Labs засучили рукава и сделали анализ
они проанализировали рецензии от 2021 года, предсказуемо почти 100% было оценено, как написанные людьми (2 картинка); а вот в текущем году уже 21% полностью сгенерирован, и еще 4% почти полностью, то есть 1 из 4 рецензий написана LLM (3 картинка)
интересно, что в плане рейтинга модели предсказуемо завышают оценки; но разница всего в три десятых балла, думаю, что статистически это неотличимо (4 картинка)
рекомендую посмотреть полные результаты, там много чего еще есть; кстати, коллеги выпустили препринт по своей системе EditLens, c помощью которой анализ делали(из забавного, процитировали моих бывших коллег, Катя, Лаида, привет!)
на мой взгляд бороться с волной ИИ-рецензий бессмысленно, нужно это возглавить; Ян ЛеКун как раз недавно рекламировал специальный сайт, куда можно загрузить статью и получить сгенерированную рецензию
@valuableai
они проанализировали рецензии от 2021 года, предсказуемо почти 100% было оценено, как написанные людьми (2 картинка); а вот в текущем году уже 21% полностью сгенерирован, и еще 4% почти полностью, то есть 1 из 4 рецензий написана LLM (3 картинка)
интересно, что в плане рейтинга модели предсказуемо завышают оценки; но разница всего в три десятых балла, думаю, что статистически это неотличимо (4 картинка)
рекомендую посмотреть полные результаты, там много чего еще есть; кстати, коллеги выпустили препринт по своей системе EditLens, c помощью которой анализ делали
на мой взгляд бороться с волной ИИ-рецензий бессмысленно, нужно это возглавить; Ян ЛеКун как раз недавно рекламировал специальный сайт, куда можно загрузить статью и получить сгенерированную рецензию
@valuableai
👍1
Forwarded from Анализ данных (Data analysis)
🚀 Вышел Qwen-Image-i2L от DiffSynth-Studio - первый open-source инструмент, который умеет делать LoRA-модель из одной картинки. 🖼️➡️🧠
Что можно извлекать из изображения:
🎨 Style — только стиль и эстетика
🧩 Coarse — стиль + содержание сцены
✨ Fine — улучшение детализации 1024×1024 (используется вместе с Coarse)
⚖️ Bias — подстройка под фирменный визуальный почерк Qwen-Image
Модель построена на SigLIP2 + DINOv3 + Qwen-VL.
Итог — можно взять одну картинку и быстро натренировать под неё собственную LoRA, без больших датасетов.
🔗 ModelScope: modelscope.cn/models/DiffSynth-Studio/Qwen-Image-i2L/summary
💻 Код: github.com/modelscope/DiffSynth-Studio/blob/main/examples/qwen_image/model_inference_low_vram/Qwen-Image-i2L.py
Что можно извлекать из изображения:
🎨 Style — только стиль и эстетика
🧩 Coarse — стиль + содержание сцены
✨ Fine — улучшение детализации 1024×1024 (используется вместе с Coarse)
⚖️ Bias — подстройка под фирменный визуальный почерк Qwen-Image
Модель построена на SigLIP2 + DINOv3 + Qwen-VL.
Итог — можно взять одну картинку и быстро натренировать под неё собственную LoRA, без больших датасетов.
🔗 ModelScope: modelscope.cn/models/DiffSynth-Studio/Qwen-Image-i2L/summary
💻 Код: github.com/modelscope/DiffSynth-Studio/blob/main/examples/qwen_image/model_inference_low_vram/Qwen-Image-i2L.py
🔥1
Forwarded from Python/ django
Документация создаёт впечатление, что любое целое число просто используется как seed (это “начальная точка” для генератора случайных чисел.).
Но Python перед использованием просто берёт абсолютное значение.
То есть:
➡️ seed(3) и seed(-3) - порождают один и тот же поток случайных чисел.
Это значит, что разные seed не всегда дают разные последовательности -
Python гарантирует только обратное: одинаковый seed → одинаковые числа.
Почему так?
В исходниках CPython есть строка, которая буквально делает:
seed = abs(seed)И знак просто теряется, хотя алгоритм случайных чисел мог бы учитывать его.
🧠 Вывод:
Не используйте небольшие вариации seed (например 5 и -5) как способ получить разные потоки случайностей — это небезопасно.
Если вам нужны независимые RNG — создавайте их явно, а не полагаясь на “умные” seed.
[1] https://docs.python.org/3/library/random.html
[2] https://github.com/python/cpython/blob/main/Modules/_randommodule.c#L321C13-L321C30
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤1🔥1🥰1🙏1😈1