Forwarded from Valuable AI / Валентин Малых
в продолжение обсуждения ICLR: не знаю, кто это начал, может быть это был Грэхэм Ньюбиг (1 картинка), но люди из Pangram Labs засучили рукава и сделали анализ
они проанализировали рецензии от 2021 года, предсказуемо почти 100% было оценено, как написанные людьми (2 картинка); а вот в текущем году уже 21% полностью сгенерирован, и еще 4% почти полностью, то есть 1 из 4 рецензий написана LLM (3 картинка)
интересно, что в плане рейтинга модели предсказуемо завышают оценки; но разница всего в три десятых балла, думаю, что статистически это неотличимо (4 картинка)
рекомендую посмотреть полные результаты, там много чего еще есть; кстати, коллеги выпустили препринт по своей системе EditLens, c помощью которой анализ делали(из забавного, процитировали моих бывших коллег, Катя, Лаида, привет!)
на мой взгляд бороться с волной ИИ-рецензий бессмысленно, нужно это возглавить; Ян ЛеКун как раз недавно рекламировал специальный сайт, куда можно загрузить статью и получить сгенерированную рецензию
@valuableai
они проанализировали рецензии от 2021 года, предсказуемо почти 100% было оценено, как написанные людьми (2 картинка); а вот в текущем году уже 21% полностью сгенерирован, и еще 4% почти полностью, то есть 1 из 4 рецензий написана LLM (3 картинка)
интересно, что в плане рейтинга модели предсказуемо завышают оценки; но разница всего в три десятых балла, думаю, что статистически это неотличимо (4 картинка)
рекомендую посмотреть полные результаты, там много чего еще есть; кстати, коллеги выпустили препринт по своей системе EditLens, c помощью которой анализ делали
на мой взгляд бороться с волной ИИ-рецензий бессмысленно, нужно это возглавить; Ян ЛеКун как раз недавно рекламировал специальный сайт, куда можно загрузить статью и получить сгенерированную рецензию
@valuableai
👍1
Forwarded from Анализ данных (Data analysis)
🚀 Вышел Qwen-Image-i2L от DiffSynth-Studio - первый open-source инструмент, который умеет делать LoRA-модель из одной картинки. 🖼️➡️🧠
Что можно извлекать из изображения:
🎨 Style — только стиль и эстетика
🧩 Coarse — стиль + содержание сцены
✨ Fine — улучшение детализации 1024×1024 (используется вместе с Coarse)
⚖️ Bias — подстройка под фирменный визуальный почерк Qwen-Image
Модель построена на SigLIP2 + DINOv3 + Qwen-VL.
Итог — можно взять одну картинку и быстро натренировать под неё собственную LoRA, без больших датасетов.
🔗 ModelScope: modelscope.cn/models/DiffSynth-Studio/Qwen-Image-i2L/summary
💻 Код: github.com/modelscope/DiffSynth-Studio/blob/main/examples/qwen_image/model_inference_low_vram/Qwen-Image-i2L.py
Что можно извлекать из изображения:
🎨 Style — только стиль и эстетика
🧩 Coarse — стиль + содержание сцены
✨ Fine — улучшение детализации 1024×1024 (используется вместе с Coarse)
⚖️ Bias — подстройка под фирменный визуальный почерк Qwen-Image
Модель построена на SigLIP2 + DINOv3 + Qwen-VL.
Итог — можно взять одну картинку и быстро натренировать под неё собственную LoRA, без больших датасетов.
🔗 ModelScope: modelscope.cn/models/DiffSynth-Studio/Qwen-Image-i2L/summary
💻 Код: github.com/modelscope/DiffSynth-Studio/blob/main/examples/qwen_image/model_inference_low_vram/Qwen-Image-i2L.py
🔥1
Forwarded from Python/ django
Документация создаёт впечатление, что любое целое число просто используется как seed (это “начальная точка” для генератора случайных чисел.).
Но Python перед использованием просто берёт абсолютное значение.
То есть:
➡️ seed(3) и seed(-3) - порождают один и тот же поток случайных чисел.
Это значит, что разные seed не всегда дают разные последовательности -
Python гарантирует только обратное: одинаковый seed → одинаковые числа.
Почему так?
В исходниках CPython есть строка, которая буквально делает:
seed = abs(seed)И знак просто теряется, хотя алгоритм случайных чисел мог бы учитывать его.
🧠 Вывод:
Не используйте небольшие вариации seed (например 5 и -5) как способ получить разные потоки случайностей — это небезопасно.
Если вам нужны независимые RNG — создавайте их явно, а не полагаясь на “умные” seed.
[1] https://docs.python.org/3/library/random.html
[2] https://github.com/python/cpython/blob/main/Modules/_randommodule.c#L321C13-L321C30
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤1🔥1🥰1🙏1😈1
Forwarded from False Positive
Media is too big
VIEW IN TELEGRAM
28 ноября Андрей Яковлев разобрал статью от OpenAI «Why Language Models Hallucinate?»
🎬Выкладываем запись встречи и делимся выводами:
🛑 галлюцинации возникают из-за статистического обучения (модель учится «угадывать» токены);
🛑 post-training не избавляют модель от галлюцинаций;
🛑 бинарные метрики бенчмарков поощряют угадывание, из-за чего модели оптимизированы быть "хорошо сдающими экзамены", а не честными;
🛑 решение — использование "честных" методов оценки и вознаграждения моделей.
#reading_group #recording #llm
🎬Выкладываем запись встречи и делимся выводами:
#reading_group #recording #llm
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Kirill Malev
AI platform for generating online courses just announced a 16M round by a16z
The product looks good but it wasn’t what clicked for me. I couldn’t help to notice the new trend of providing refined videos in the posts to share key updates. That’s something which just entered our life with the spread of AI.
Website: oboe.com
Source: https://x.com/nirzicherman/status/1998770866809712839
#AI #AI_adoption
The product looks good but it wasn’t what clicked for me. I couldn’t help to notice the new trend of providing refined videos in the posts to share key updates. That’s something which just entered our life with the spread of AI.
Website: oboe.com
Source: https://x.com/nirzicherman/status/1998770866809712839
#AI #AI_adoption
❤1
Forwarded from База знаний AI
«Норникель» выпустил открытую языковую модель MetalGPT-1 и бенчмарк Alloy-Bench для металлургии
MetalGPT-1 обучена на 10 Гб текстов по металлургии и горнодобывающей промышленности. Это больше чем 1 млн документов, недоступных в открытых источниках. Данные прошли очистку и анонимизацию, чтобы предотвратить раскрытие коммерческой тайны. При обучении также использовалось около 500 тыс. вопросно-ответных и инструктивных пар на основе производственных и научных задач.
Модель содержит 32 млрд параметров. Она спроектирована для работы с профессиональной терминологией, аббревиатурами и сложными технологическими цепочками. «Норникель» создает на базе MetalGPT-1 персональных ИИ-ассистентов и автономных агентов, которые внедряются в операционные процессы компании.
Промышленный бенчмарк Alloy-Bench состоит из набора вопросно-ответных пар, которые относятся к различным процессам горно-металлургической отрасли. Как утверждают разработчики, MetalGPT-1 в тестах превосходит открытые универсальные модели.
👉🏻MetalGPT-1 и Alloy-Bench на Hugging Face
🔗Источник: https://nornickel.ru/news-and-media/press-releases-and-news/metalgpt-1-nornikel-vypustil-bolshuyu-yazykovuyu-model-dlya-metallurgii/
MetalGPT-1 обучена на 10 Гб текстов по металлургии и горнодобывающей промышленности. Это больше чем 1 млн документов, недоступных в открытых источниках. Данные прошли очистку и анонимизацию, чтобы предотвратить раскрытие коммерческой тайны. При обучении также использовалось около 500 тыс. вопросно-ответных и инструктивных пар на основе производственных и научных задач.
Модель содержит 32 млрд параметров. Она спроектирована для работы с профессиональной терминологией, аббревиатурами и сложными технологическими цепочками. «Норникель» создает на базе MetalGPT-1 персональных ИИ-ассистентов и автономных агентов, которые внедряются в операционные процессы компании.
Промышленный бенчмарк Alloy-Bench состоит из набора вопросно-ответных пар, которые относятся к различным процессам горно-металлургической отрасли. Как утверждают разработчики, MetalGPT-1 в тестах превосходит открытые универсальные модели.
👉🏻MetalGPT-1 и Alloy-Bench на Hugging Face
🔗Источник: https://nornickel.ru/news-and-media/press-releases-and-news/metalgpt-1-nornikel-vypustil-bolshuyu-yazykovuyu-model-dlya-metallurgii/
👍2
Forwarded from Мой Компьютер
Nvidia будет отслеживать геолокацию своих ИИ-чипов
Ресурс Reuters сообщил, что Nvidia разработала технологию, которая позволит определить страну, где фактически находится каждый её ИИ-чип. Речь идет о простом пинге: ускоритель будет отправлять запросы на служебные серверы Nvidia, и по времени отклика до каждого можно определить примерное местоположение. Этот функционал будет встроен в систему отслеживания состояния GPU-фермы клиента.
Изначально такая технология появится в новейших ускорителях Blackwell, которые имеют расширенные средства аттестации и защиты. В будущем она может появиться на более старых решениях Hopper и Ampere. А значит в теории Nvidia может устроить такую же слежку за видеокартами обычных пользователей и запрещать их работу в санкционных странах.
Мой Компьютер
Ресурс Reuters сообщил, что Nvidia разработала технологию, которая позволит определить страну, где фактически находится каждый её ИИ-чип. Речь идет о простом пинге: ускоритель будет отправлять запросы на служебные серверы Nvidia, и по времени отклика до каждого можно определить примерное местоположение. Этот функционал будет встроен в систему отслеживания состояния GPU-фермы клиента.
Изначально такая технология появится в новейших ускорителях Blackwell, которые имеют расширенные средства аттестации и защиты. В будущем она может появиться на более старых решениях Hopper и Ampere. А значит в теории Nvidia может устроить такую же слежку за видеокартами обычных пользователей и запрещать их работу в санкционных странах.
Мой Компьютер