Orgone Channel Telegram – Telegram
Orgone Channel Telegram
552 subscribers
662 photos
772 videos
498 files
1.69K links
Orgone Channel Telegram
—Exploring classicists succeeding WR and avant garde succeeding JD.
Download Telegram
Truth versus Modju
Dr. Wilhelm Reich, MD
Orgone Energy Bulletin Vol. IV № 3
🥰1
'Part I of ORGONOMIC FUNCTIONALISM, "Ether, God and Devil," appears in the Annals of the Orgone Institute, №. 2.
ORGONOMIC FUNCTIONALISM itself is part of the third volume of THE DISCOVERY OF THE ORGONE: ORGONOMETRY.'

Footnote from
Orgone Energy Bulletin Vol. 2, No. 1, January 1950, page 1,
Orgonomic Functionalism Part II, On the Historical Development of Orgonomic Functionalism,
by Wilhelm Reich
🔥1
"This was what Feynman called the Babylonian approach to science. It’s closer to engineering. To a Babylonian scientist, “Does it work?” “Does the bridge stand?” are better questions than, “Is it elegant?” “Does it explain the mind of God?”

"Feynman divided all scientists as Athenians or Babylonians. He was of the second group. But Athenians wanted to know the essence of the problem. They, like Plato, thought of the perfect form. A chair had a form or an essence that was more elegant than the thing in your dining room that had splinters and wobbled. The form was more important to Athenian philosophy, than the thing itself.

"Feynman pointed out that the Babylonians used mathematics with base 60 because it allowed for more factoring. So we still have a circle with 360 degrees, 60 minutes and 60 seconds of arc. It was practical. Feynman’s rival, Murray Gell-Mann was an Athenian in how he approached theoretical physics. These two brilliant physicists couldn’t agree on anything. It is ironic that Gell-Mann and Feynman shared a secretary. She must have had an interesting job.

"In direct answer to your question, a Babylonian or an engineer stands by that which stands."

https://news.1rj.ru/str/orgonecontinuum/86
pictured, Robert Shankland
sampled from
Dayton Miller's Ether-Drift
Experiments: A Fresh Look*

James DeMeo
http://orgonelab.org/miller.htm
Shankland Team's 1955 Critique of Miller
pictured, Robert Shankland
https://news.1rj.ru/str/orgonecontinuum/88
excerpted from
Dayton Miller's Ether-Drift
Experiments: A Fresh Look*

James DeMeo
http://orgonelab.org/miller.htm

As previously pointed out by Swenson, Shankland's 1955 critique of Miller's work was undertaken with "extensive consultations" with Einstein, who like Newton and others before him had assumed only a static or stagnant ether, through which the Earth passed without material affect and, hence, without entrainment close to the Earth's surface. Shankland in fact was Miller's student for many years, and only emerged to become a professional advocate of Einstein's relativity after the death of Miller in 1941. Shankland became Chairman of the Physics Department at Case following Miller's retirement and death, building his professional career upon publications misrepresenting the Michelson-Morley experiments as the most solid evidence on the question, and publishing widely-read interviews with Einstein (Shankland 1963, 1964, 1973a, 1973b). Shankland later took up administrative positions within government agencies developing nuclear energy — he rarely discussed Miller's positive ether-drift measurements in any of these papers except in the 1955 paper under discussion here. In this sense, it is legitimate to view Shankland, and other members of his team (all Einstein advocates from Case) as very biased reviewers of Miller's work.

The very first sentence in the Shankland team's 1955 paper began with the falsehood, now widely parroted in nearly every physics textbook, that the Michelson-Morley experiments had a "null" result. The third sentence in the Shankland paper was similarly false, claiming that "All trials of this experiment except those carried out at Mount Wilson by Dayton C. Miller yielded a null result within the accuracy of the observations." This kind of chronic misrepresentation of the slight positive results of many interferometer experimenters, including Michelson-Morley, Morley-Miller, Sagnac, Michelson-Gale, and Michelson-Pease-Pearson, suggests an extreme bias and deliberate misrepresentation. The fact that this is a very popular bias does not excuse it. By redefining all the positive results observed by what may in fact have been the majority of ether-drift researchers, as mere expressions of "observational inaccuracy", Shankland narrowed his task considerably.

These and other sentences in the Shankland paper revealed its bias from the get-go, and gave it the spirit of an autopsy, where Miller was dissected without careful concern, and certainly where no advocate of ether theory appeared to be involved in the process. It is possible, by the 1950s, there was nobody left who could fill Miller's shoes to make an adequate defense. Ether-theory was then being compared to "the search for perpetual-motion machines" (Swenson 1972, p.239), and such ridicule surely must have had a silencing effect upon the entire fields of physics and astronomy. Swenson also suggests that, during his later years, Miller was largely ignored and isolated. This appears to be correct, as according to an interview with Shankland made in 1981, shortly before Miller died he gave all of his interferometer data sheets — hundreds of pages of measurements —to his one-time student Shankland, with the somewhat bitter statement that he should "either analyze the data, or burn it" (Kimball 1981, p.2). In that same interview, Shankland also blamed Miller for having blocked the awarding of a Nobel Prize to Einstein for his relativity theory — clearly, Miller's work was a major obstacle to the Einstein theory of relativity, and for that reason may have given Einstein and his followers sleepless nights.

The noscript of the Shankland paper, and its overall representation suggests the authors had made a serious review of "the interferometer observations" of Miller, to include some kind of comprehensive and inclusive evaluation — but this was not the case.
There were two basic approaches to the Shankland team's analysis: 1) a search for random errors or statistical fluctuations in Miller's data, and 2) a review of selected data sets which they claimed demonstrated significant thermal artifacts in the data. We can review these claims.
Orgone Channel Telegram
There were two basic approaches to the Shankland team's analysis: 1) a search for random errors or statistical fluctuations in Miller's data, and 2) a review of selected data sets which they claimed demonstrated significant thermal artifacts in the data. We…
Shankland Team's Evaluation for Random-Statistical variations

The Shankland paper did present a statistical analysis of a portion of Miller's published 1925-1926 Mt. Wilson data, concluding that his observations "...cannot be attributed entirely to random effects, but that systematic effects are present to an appreciable degree" and that "the periodic effects observed by Miller cannot be accounted for entirely by random statistical fluctuations in the basic data". (p.170) Also, the Shankland team admitted they "...did not embark on a statistically sound recomputation of the cosmic solution, but rather [looked for]...local disturbances such as may be caused by mechanical effects or by nonuniform temperature distributions in the observational hut." (p.172) In short, they admitted the harmonic patterns in Miller's data could not be due to any systematic measurement error, nor result from any mechanical flaws in the interferometer apparatus itself — while simultaneously admitting a disinterest in computation of any potentially validating ether-drift axis ("cosmic solution") from his data. These were important admissions, as the suggestion is, unless they could find some other fatal flaw in his data, Miller had really got it right, and measured a real Earth-entrained ether drift.

Of interest from the perspective of the politics of science, is the fact that this statistical analysis was not undertaken by any of the four members of the Shankland team listed as authors of the paper! The analysis was in fact undertaken by Case physics student Robert L. Stearns, for his Master's Thesis (Stearns 1952) — Stearns was given only a footnote credit in the Shankland paper.

Stearns, who performed the analysis, informs us about the large amount of data gathered by Miller. He mentions (Stearns 1952, p.15-17) the existence of "316 sets of data...by Miller in 1925-26" for the centrally-important Mt. Wilson experiments. Each data set was composed of 20 turns of the interferometer, with sixteen data points per turn (a total of 320 data points per data set). Miller noted his work at Mt. Wilson was undertaken at four different seasonal "epochs", each of which encompassed a period of around ten days, centered on the following dates: April 1st, August 1st, and September 15th, 1925 and February 8th 1926 (Miller 1926, 1933). It must be kept in mind, that these Mt. Wilson data from 1925 and 1926 provided the most conclusive and foundational observations for Miller's ether-drift calculations and conclusions, as presented most clearly in his 1933 paper. As detailed below, the Shankland team mentions these Mt. Wilson data, but in a manner which confuses them with his earlier and less significant efforts, including various control experiments conducted at Case School. The significance of this confusion of dates will be highlighted momentarily.
It is clear Miller had been deeply engaged on the problem of temperature effects, and worked hard to know exactly how they might be produced, and how to eliminate them. The Shankland paper, however, seized upon Miller's open acknowledgment fringe-shifts from air heating by powerful radiant heaters during control experiments, and a few other sentences written in his lab book, and tried to claim thermal anomalies were probably the source of whatever periodic effects were subsequently measured by Miller at Mt. Wilson, when no radiant heaters were used, and when the empirically-developed control procedures were put in place. Without some kind of independent experimental evidence to support such a claim of a thermal influence, their dismissal was illogical.

The Shankland paper also went through a series of arguments about the interferometer house, how the wall materials, roof angles, interferometer glass housing, etc., might result in a definable effect upon the air temperature in the light beam path, concluding only they could not rule out such an influence — that it "...is not in quantitative contradiction with the physical conditions of the experiment". (p.175) Given their ignoring the sidereal nature of the periodicities, this statement could hardly be taken seriously, and certainly did not constitute a rebuttal of Miller's data.

The Shankland paper finally attempted to correlate several selected daytime interferometer runs with temperature measurements made at the same time. They acknowledged difficulty in correlating low fringe-shift values with low temperature differentials, but found one set of high fringe-shift values correlated with slightly higher temperatures, even while noting another set where high values correlated with lower temperatures. Finally, they complain that "...no temperature data are available to reveal thermal conditions at the roof, which may be responsible for the large fringe displacements at the times of highest altitudes of the Sun." (p.176) If this sounds confusing, a reading of the full original text provided little clarification.

Failing to show anything damning from daytime data sets, when temperature gradients inside the interferometer house might be expected to be at a maximum, they turned their focus to nighttime data sets. Once again, only a few of Miller's data sheets were selected out to prove their case. Data from two nights (30 Aug. 1927 and 23 Sept.1925) with stable air temperatures were reviewed — these nights showed very clear and systematic fringe variations (Fig.4, p.176), but because the azimuth of the fringes changed minimally over the approximate 5 hours of observation, the critics complained "it would be extremely unlikely if the fringe shifts were due to any cosmic effect" (p.177). Apparently, the Shankland team was so locked into the older "static ether" assumptions of the original Michelson-Morley experiment, they were unclear about what they should have seen in Miller's data. In 1927, at a Conference on the Michelson-Morley Experiment held at Mt. Wilson Observatory, where Michelson, Lorentz, Miller and others made presentations and engaged in open debate, Miller addressed this question: "Observations were made for verifying these [static ether] predictions ...but it did not point successively to all points of the compass, that is, it did not point in directions 90° apart at intervals of six hours. Instead of this, the direction merely oscillated back and forth through an angle of about 60°..." (Miller 1928, p.356-357) The reason for this is, Miller's detected axis of ether-drift is oriented reasonably close (within 60°) to both the Earth's axis of rotation and the axis of the plane of the ecliptic.

Another important fact which nearly escapes detection in the Shankland paper is that the 30 August data were made in Cleveland, while the 23 Sept. data were from Mt. Wilson, and neither were a part of the published Mt. Wilson data Miller used for calculations of the ether-drift — both dates are well outside of the 10-day epochal periods identified by Miller.