Python Projects & Resources – Telegram
Python Projects & Resources
60.9K subscribers
858 photos
342 files
346 links
Perfect channel to learn Python Programming 🇮🇳
Download Free Books & Courses to master Python Programming
- Free Courses
- Projects
- Pdfs
- Bootcamps
- Notes

Admin: @Coderfun
Download Telegram
Don't overwhelm to learn Git,🙌

Git is only this much👇😇


1.Core:
• git init
• git clone
• git add
• git commit
• git status
• git diff
• git checkout
• git reset
• git log
• git show
• git tag
• git push
• git pull

2.Branching:
• git branch
• git checkout -b
• git merge
• git rebase
• git branch --set-upstream-to
• git branch --unset-upstream
• git cherry-pick

3.Merging:
• git merge
• git rebase

4.Stashing:
• git stash
• git stash pop
• git stash list
• git stash apply
• git stash drop

5.Remotes:
• git remote
• git remote add
• git remote remove
• git fetch
• git pull
• git push
• git clone --mirror

6.Configuration:
• git config
• git global config
• git reset config

7. Plumbing:
• git cat-file
• git checkout-index
• git commit-tree
• git diff-tree
• git for-each-ref
• git hash-object
• git ls-files
• git ls-remote
• git merge-tree
• git read-tree
• git rev-parse
• git show-branch
• git show-ref
• git symbolic-ref
• git tag --list
• git update-ref

8.Porcelain:
• git blame
• git bisect
• git checkout
• git commit
• git diff
• git fetch
• git grep
• git log
• git merge
• git push
• git rebase
• git reset
• git show
• git tag

9.Alias:
• git config --global alias.<alias> <command>

10.Hook:
• git config --local core.hooksPath <path>

Best Telegram channels to get free coding & data science resources
https://news.1rj.ru/str/addlist/4q2PYC0pH_VjZDk5


Free Courses with Certificate:
https://news.1rj.ru/str/free4unow_backup
👍87
⌨️ Learn About Python List Methods
🔥9👍61🤔1
Python for everything 👆
🔥8👍2
Python important function that every python developer should know
👍8🔥2
Python 💪❤️
21
Python password generator
👍121
Python for Data Science
👍2🔥21
Essential Python Libraries for Data Analytics 😄👇

Python Free Resources: https://news.1rj.ru/str/pythondevelopersindia

1. NumPy:
- Efficient numerical operations and array manipulation.

2. Pandas:
- Data manipulation and analysis with powerful data structures (DataFrame, Series).

3. Matplotlib:
- 2D plotting library for creating visualizations.

4. Scikit-learn:
- Machine learning toolkit for classification, regression, clustering, etc.

5. TensorFlow:
- Open-source machine learning framework for building and deploying ML models.

6. PyTorch:
- Deep learning library, particularly popular for neural network research.

7. Django:
- High-level web framework for building robust, scalable web applications.

8. Flask:
- Lightweight web framework for building smaller web applications and APIs.

9. Requests:
- HTTP library for making HTTP requests.

10. Beautiful Soup:
- Web scraping library for pulling data out of HTML and XML files.

As a beginner, you can start with Pandas and Numpy libraries for data analysis. If you want to transition from Data Analyst to Data Scientist, then you can start applying ML libraries like Scikit-learn, Tensorflow, Pytorch, etc. in your data projects.

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
👍84🥰1
System Design Basics
🔥4👏2
Web Frameworks in Python 👆
🔥4
Python Libraries for Generative AI
🔥51🥰1
Python For Everything!🐍

Python, the versatile language, can be combined with various libraries to build amazing things:🚀

1. Python + Pandas = Data Manipulation
2. Python + Scikit-Learn = Machine Learning
3. Python + TensorFlow = Deep Learning
4. Python + Matplotlib = Data Visualization
5. Python + Seaborn = Advanced Visualization
6. Python + Flask = Web Development
7. Python + Pygame = Game Development
8. Python + Kivy = Mobile App Development

#Python
👍104
Python Methods
🔥7👍5🥰1👏1
Python for everything 👆
🔥8👍1
⌨️ Python Tips & Tricks
👍81
For data analysts working with Python, mastering these top 10 concepts is essential:

1. Data Structures: Understand fundamental data structures like lists, dictionaries, tuples, and sets, as well as libraries like NumPy and Pandas for more advanced data manipulation.

2. Data Cleaning and Preprocessing: Learn techniques for cleaning and preprocessing data, including handling missing values, removing duplicates, and standardizing data formats.

3. Exploratory Data Analysis (EDA): Use libraries like Pandas, Matplotlib, and Seaborn to perform EDA, visualize data distributions, identify patterns, and explore relationships between variables.

4. Data Visualization: Master visualization libraries such as Matplotlib, Seaborn, and Plotly to create various plots and charts for effective data communication and storytelling.

5. Statistical Analysis: Gain proficiency in statistical concepts and methods for analyzing data distributions, conducting hypothesis tests, and deriving insights from data.

6. Machine Learning Basics: Familiarize yourself with machine learning algorithms and techniques for regression, classification, clustering, and dimensionality reduction using libraries like Scikit-learn.

7. Data Manipulation with Pandas: Learn advanced data manipulation techniques using Pandas, including merging, grouping, pivoting, and reshaping datasets.

8. Data Wrangling with Regular Expressions: Understand how to use regular expressions (regex) in Python to extract, clean, and manipulate text data efficiently.

9. SQL and Database Integration: Acquire basic SQL skills for querying databases directly from Python using libraries like SQLAlchemy or integrating with databases such as SQLite or MySQL.

10. Web Scraping and API Integration: Explore methods for retrieving data from websites using web scraping libraries like BeautifulSoup or interacting with APIs to access and analyze data from various sources.

Give credits while sharing: https://news.1rj.ru/str/pythonanalyst

ENJOY LEARNING 👍👍
👍113👏1😁1