Python Projects & Resources – Telegram
Python Projects & Resources
60.8K subscribers
858 photos
342 files
345 links
Perfect channel to learn Python Programming 🇮🇳
Download Free Books & Courses to master Python Programming
- Free Courses
- Projects
- Pdfs
- Bootcamps
- Notes

Admin: @Coderfun
Download Telegram
⌨️ Learn About Python List Methods
👏16👍2🔥2
India won Champions Trophy 🏆🎉
23🎉7🔥4👏2
Python for Everything:

Python + Django = Web Development

Python + Matplotlib = Data Visualization

Python + Flask = Web Applications

Python + Pygame = Game Development

Python + PyQt = Desktop Applications

Python + TensorFlow = Machine Learning

Python + FastAPI = API Development

Python + Kivy = Mobile App Development

Python + Pandas = Data Analysis

Python + NumPy = Scientific Computing
👍84
Python Libraries for Data Science
👍84
How to master Python from scratch🚀

1. Setup and Basics 🏁
   - Install Python 🖥️: Download Python and set it up.
   - Hello, World! 🌍: Write your first Hello World program.

2. Basic Syntax 📜
   - Variables and Data Types 📊: Learn about strings, integers, floats, and booleans.
   - Control Structures 🔄: Understand if-else statements, for loops, and while loops.
   - Functions 🛠️: Write reusable blocks of code.

3. Data Structures 📂
   - Lists 📋: Manage collections of items.
   - Dictionaries 📖: Store key-value pairs.
   - Tuples 📦: Work with immutable sequences.
   - Sets 🔢: Handle collections of unique items.

4. Modules and Packages 📦
   - Standard Library 📚: Explore built-in modules.
   - Third-Party Packages 🌐: Install and use packages with pip.

5. File Handling 📁
   - Read and Write Files 📝
   - CSV and JSON 📑

6. Object-Oriented Programming 🧩
   - Classes and Objects 🏛️
   - Inheritance and Polymorphism 👨‍👩‍👧

7. Web Development 🌐
   - Flask 🍼: Start with a micro web framework.
   - Django 🦄: Dive into a full-fledged web framework.

8. Data Science and Machine Learning 🧠
   - NumPy 📊: Numerical operations.
   - Pandas 🐼: Data manipulation and analysis.
   - Matplotlib 📈 and Seaborn 📊: Data visualization.
   - Scikit-learn 🤖: Machine learning.

9. Automation and Scripting 🤖
   - Automate Tasks 🛠️: Use Python to automate repetitive tasks.
   - APIs 🌐: Interact with web services.

10. Testing and Debugging 🐞
    - Unit Testing 🧪: Write tests for your code.
    - Debugging 🔍: Learn to debug efficiently.

11. Advanced Topics 🚀
    - Concurrency and Parallelism 🕒
    - Decorators 🌀 and Generators ⚙️
    - Web Scraping 🕸️: Extract data from websites using BeautifulSoup and Scrapy.

12. Practice Projects 💡
    - Calculator 🧮
    - To-Do List App 📋
    - Weather App ☀️
    - Personal Blog 📝

13. Community and Collaboration 🤝
    - Contribute to Open Source 🌍
    - Join Coding Communities 💬
    - Participate in Hackathons 🏆

14. Keep Learning and Improving 📈
    - Read Books 📖: Like "Automate the Boring Stuff with Python".
    - Watch Tutorials 🎥: Follow video courses and tutorials.
    - Solve Challenges 🧩: On platforms like LeetCode, HackerRank, and CodeWars.

15. Teach and Share Knowledge 📢
    - Write Blogs ✍️
    - Create Video Tutorials 📹
    - Mentor Others 👨‍🏫

I have curated the best interview resources to crack Python Interviews 👇👇
https://topmate.io/coding/898340

Hope you'll like it

Like this post if you need more resources like this 👍❤️
👍94
Python Mindmap
🔥74👍3👌1
How to convert image to pdf in Python

# Python3 program to convert image to pfd
# using img2pdf library
 
# importing necessary libraries
import img2pdf
from PIL import Image
import os
 
# storing image path
img_path = "Input.png"
 
# storing pdf path
pdf_path = "file_pdf.pdf"
 
# opening image
image = Image.open(img_path)
 
# converting into chunks using img2pdf
pdf_bytes = img2pdf.convert(image.filename)
 
# opening or creating pdf file
file = open(pdf_path, "wb")
 
# writing pdf files with chunks
file.write(pdf_bytes)
 
# closing image file
image.close()
 
# closing pdf file
file.close()
 
# output
print("Successfully made pdf file")

pip3 install pillow && pip3 install img2pdf
👍112
⌨️ Hide secret message in image using Python
👍105🔥5👏1
⌨️ Grammar Correction using Python
6👍5👏4
Happy Holi Guys 🎨🎆
6👍2
Don't overwhelm to learn Git,🙌

Git is only this much👇😇


1.Core:
• git init
• git clone
• git add
• git commit
• git status
• git diff
• git checkout
• git reset
• git log
• git show
• git tag
• git push
• git pull

2.Branching:
• git branch
• git checkout -b
• git merge
• git rebase
• git branch --set-upstream-to
• git branch --unset-upstream
• git cherry-pick

3.Merging:
• git merge
• git rebase

4.Stashing:
• git stash
• git stash pop
• git stash list
• git stash apply
• git stash drop

5.Remotes:
• git remote
• git remote add
• git remote remove
• git fetch
• git pull
• git push
• git clone --mirror

6.Configuration:
• git config
• git global config
• git reset config

7. Plumbing:
• git cat-file
• git checkout-index
• git commit-tree
• git diff-tree
• git for-each-ref
• git hash-object
• git ls-files
• git ls-remote
• git merge-tree
• git read-tree
• git rev-parse
• git show-branch
• git show-ref
• git symbolic-ref
• git tag --list
• git update-ref

8.Porcelain:
• git blame
• git bisect
• git checkout
• git commit
• git diff
• git fetch
• git grep
• git log
• git merge
• git push
• git rebase
• git reset
• git show
• git tag

9.Alias:
• git config --global alias.<alias> <command>

10.Hook:
• git config --local core.hooksPath <path>

Best Telegram channels to get free coding & data science resources
https://news.1rj.ru/str/addlist/4q2PYC0pH_VjZDk5


Free Courses with Certificate:
https://news.1rj.ru/str/free4unow_backup
👍87
⌨️ Learn About Python List Methods
🔥9👍61🤔1
Python for everything 👆
🔥8👍2
Python important function that every python developer should know
👍8🔥2
Python 💪❤️
21
Python password generator
👍121
Python for Data Science
👍2🔥21
Essential Python Libraries for Data Analytics 😄👇

Python Free Resources: https://news.1rj.ru/str/pythondevelopersindia

1. NumPy:
- Efficient numerical operations and array manipulation.

2. Pandas:
- Data manipulation and analysis with powerful data structures (DataFrame, Series).

3. Matplotlib:
- 2D plotting library for creating visualizations.

4. Scikit-learn:
- Machine learning toolkit for classification, regression, clustering, etc.

5. TensorFlow:
- Open-source machine learning framework for building and deploying ML models.

6. PyTorch:
- Deep learning library, particularly popular for neural network research.

7. Django:
- High-level web framework for building robust, scalable web applications.

8. Flask:
- Lightweight web framework for building smaller web applications and APIs.

9. Requests:
- HTTP library for making HTTP requests.

10. Beautiful Soup:
- Web scraping library for pulling data out of HTML and XML files.

As a beginner, you can start with Pandas and Numpy libraries for data analysis. If you want to transition from Data Analyst to Data Scientist, then you can start applying ML libraries like Scikit-learn, Tensorflow, Pytorch, etc. in your data projects.

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
👍84🥰1
System Design Basics
🔥4👏2