Python Projects & Resources – Telegram
Python Projects & Resources
60.8K subscribers
858 photos
342 files
345 links
Perfect channel to learn Python Programming 🇮🇳
Download Free Books & Courses to master Python Programming
- Free Courses
- Projects
- Pdfs
- Bootcamps
- Notes

Admin: @Coderfun
Download Telegram
Python Important Star Patterns.
👍41
Python Roadmap
🔥62
Template for connect with Recruiter

Dear Recruiter,

I hope this message finds you well. I am reaching out to inquire about any suitable job openings that match my qualifications and experience in Software development Engineer .

I would greatly appreciate it if you could keep me informed of any job openings that would be a good match for my profile.

Thank you for considering my request, and I look forward to hearing back from you soon, Please Share this with your Hiring network, It will be a great help for me.

Best regards,
Xyz
👍52
Python Data Types 👆
👍83
The most popular programming languages:

1. Python
2. TypeScript
3. JavaScript
4. C#
5. HTML
6. Rust
7. C++
8. C
9. Go
10. Lua
11. Kotlin
12. Java
13. Swift
14. Jupyter Notebook
15. Shell
16. CSS
17. GDScript
18. Solidity
19. Vue
20. PHP
21. Dart
22. Ruby
23. Objective-C
24. PowerShell
25. Scala

According to the Latest GitHub Repositories
👍8
Guys, Big Announcement!

We’ve officially hit 5 Lakh followers on WhatsApp and it’s time to level up together! ❤️

I've launched a Python Learning Series — designed for beginners to those preparing for technical interviews or building real-world projects.

This will be a step-by-step journey — from basics to advanced — with real examples and short quizzes after each topic to help you lock in the concepts.

Here’s what we’ll cover in the coming days:

Week 1: Python Fundamentals

- Variables & Data Types

- Operators & Expressions

- Conditional Statements (if, elif, else)

- Loops (for, while)

- Functions & Parameters

- Input/Output & Basic Formatting


Week 2: Core Python Skills

- Lists, Tuples, Sets, Dictionaries

- String Manipulation

- List Comprehensions

- File Handling

- Exception Handling


Week 3: Intermediate Python

- Lambda Functions

- Map, Filter, Reduce

- Modules & Packages

- Scope & Global Variables

- Working with Dates & Time


Week 4: OOP & Pythonic Concepts

- Classes & Objects

- Inheritance & Polymorphism

- Decorators (Intro level)

- Generators & Iterators

- Writing Clean & Readable Code


Week 5: Real-World & Interview Prep

- Web Scraping (BeautifulSoup)

- Working with APIs (Requests)

- Automating Tasks

- Data Analysis Basics (Pandas)

- Interview Coding Patterns

You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1527
👍64
Python Mindmap
🔥2
How to convert image to pdf in Python

# Python3 program to convert image to pfd
# using img2pdf library
 
# importing necessary libraries
import img2pdf
from PIL import Image
import os
 
# storing image path
img_path = "Input.png"
 
# storing pdf path
pdf_path = "file_pdf.pdf"
 
# opening image
image = Image.open(img_path)
 
# converting into chunks using img2pdf
pdf_bytes = img2pdf.convert(image.filename)
 
# opening or creating pdf file
file = open(pdf_path, "wb")
 
# writing pdf files with chunks
file.write(pdf_bytes)
 
# closing image file
image.close()
 
# closing pdf file
file.close()
 
# output
print("Successfully made pdf file")

pip3 install pillow && pip3 install img2pdf
👍61
📚 9 must-have Python developer tools.

1. PyCharm IDE

2. Jupyter notebook

3. Keras

4. Pip Package

5. Python Anywhere

6. Scikit-Learn

7. Sphinx

8. Selenium

9. Sublime Text
👍54
👉The Ultimate Guide to the Pandas Library for Data Science in Python
👇👇

https://www.freecodecamp.org/news/the-ultimate-guide-to-the-pandas-library-for-data-science-in-python/amp/

A Visual Intro to NumPy and Data Representation
.
Link : 👇👇
https://jalammar.github.io/visual-numpy/

Matplotlib Cheatsheet 👇👇

https://github.com/rougier/matplotlib-cheatsheet

SQL Cheatsheet 👇👇

https://websitesetup.org/sql-cheat-sheet/
👍5
Important questions to ace your machine learning interview with an approach to answer:

1. Machine Learning Project Lifecycle:
   - Define the problem
   - Gather and preprocess data
   - Choose a model and train it
   - Evaluate model performance
   - Tune and optimize the model
   - Deploy and maintain the model

2. Supervised vs Unsupervised Learning:
   - Supervised Learning: Uses labeled data for training (e.g., predicting house prices from features).
   - Unsupervised Learning: Uses unlabeled data to find patterns or groupings (e.g., clustering customer segments).

3. Evaluation Metrics for Regression:
   - Mean Absolute Error (MAE)
   - Mean Squared Error (MSE)
   - Root Mean Squared Error (RMSE)
   - R-squared (coefficient of determination)

4. Overfitting and Prevention:
   - Overfitting: Model learns the noise instead of the underlying pattern.
   - Prevention: Use simpler models, cross-validation, regularization.

5. Bias-Variance Tradeoff:
   - Balancing error due to bias (underfitting) and variance (overfitting) to find an optimal model complexity.

6. Cross-Validation:
   - Technique to assess model performance by splitting data into multiple subsets for training and validation.

7. Feature Selection Techniques:
   - Filter methods (e.g., correlation analysis)
   - Wrapper methods (e.g., recursive feature elimination)
   - Embedded methods (e.g., Lasso regularization)

8. Assumptions of Linear Regression:
   - Linearity
   - Independence of errors
   - Homoscedasticity (constant variance)
   - No multicollinearity

9. Regularization in Linear Models:
   - Adds a penalty term to the loss function to prevent overfitting by shrinking coefficients.

10. Classification vs Regression:
    - Classification: Predicts a categorical outcome (e.g., class labels).
    - Regression: Predicts a continuous numerical outcome (e.g., house price).

11. Dimensionality Reduction Algorithms:
    - Principal Component Analysis (PCA)
    - t-Distributed Stochastic Neighbor Embedding (t-SNE)

12. Decision Tree:
    - Tree-like model where internal nodes represent features, branches represent decisions, and leaf nodes represent outcomes.

13. Ensemble Methods:
    - Combine predictions from multiple models to improve accuracy (e.g., Random Forest, Gradient Boosting).

14. Handling Missing or Corrupted Data:
    - Imputation (e.g., mean substitution)
    - Removing rows or columns with missing data
    - Using algorithms robust to missing values

15. Kernels in Support Vector Machines (SVM):
    - Linear kernel
    - Polynomial kernel
    - Radial Basis Function (RBF) kernel

Data Science Interview Resources
👇👇
https://topmate.io/coding/914624

Like for more 😄
👍91
🔅 Convert Video to Audio using Python
🔥1