Are you looking to become a machine learning engineer? The algorithm brought you to the right place! 📌
I created a free and comprehensive roadmap. Let's go through this thread and explore what you need to know to become an expert machine learning engineer:
Math & Statistics
Just like most other data roles, machine learning engineering starts with strong foundations from math, precisely linear algebra, probability and statistics.
Here are the probability units you will need to focus on:
Basic probability concepts statistics
Inferential statistics
Regression analysis
Experimental design and A/B testing Bayesian statistics
Calculus
Linear algebra
Python:
You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.
Variables, data types, and basic operations
Control flow statements (e.g., if-else, loops)
Functions and modules
Error handling and exceptions
Basic data structures (e.g., lists, dictionaries, tuples)
Object-oriented programming concepts
Basic work with APIs
Detailed data structures and algorithmic thinking
Machine Learning Prerequisites:
Exploratory Data Analysis (EDA) with NumPy and Pandas
Basic data visualization techniques to visualize the variables and features.
Feature extraction
Feature engineering
Different types of encoding data
Machine Learning Fundamentals
Using scikit-learn library in combination with other Python libraries for:
Supervised Learning: (Linear Regression, K-Nearest Neighbors, Decision Trees)
Unsupervised Learning: (K-Means Clustering, Principal Component Analysis, Hierarchical Clustering)
Reinforcement Learning: (Q-Learning, Deep Q Network, Policy Gradients)
Solving two types of problems:
Regression
Classification
Neural Networks:
Neural networks are like computer brains that learn from examples, made up of layers of "neurons" that handle data. They learn without explicit instructions.
Types of Neural Networks:
Feedforward Neural Networks: Simplest form, with straight connections and no loops.
Convolutional Neural Networks (CNNs): Great for images, learning visual patterns.
Recurrent Neural Networks (RNNs): Good for sequences like text or time series, because they remember past information.
In Python, it’s the best to use TensorFlow and Keras libraries, as well as PyTorch, for deeper and more complex neural network systems.
Deep Learning:
Deep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured or unlabeled.
Convolutional Neural Networks (CNNs)
Recurrent Neural Networks (RNNs)
Long Short-Term Memory Networks (LSTMs)
Generative Adversarial Networks (GANs)
Autoencoders
Deep Belief Networks (DBNs)
Transformer Models
Machine Learning Project Deployment
Machine learning engineers should also be able to dive into MLOps and project deployment. Here are the things that you should be familiar or skilled at:
Version Control for Data and Models
Automated Testing and Continuous Integration (CI)
Continuous Delivery and Deployment (CD)
Monitoring and Logging
Experiment Tracking and Management
Feature Stores
Data Pipeline and Workflow Orchestration
Infrastructure as Code (IaC)
Model Serving and APIs
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
I created a free and comprehensive roadmap. Let's go through this thread and explore what you need to know to become an expert machine learning engineer:
Math & Statistics
Just like most other data roles, machine learning engineering starts with strong foundations from math, precisely linear algebra, probability and statistics.
Here are the probability units you will need to focus on:
Basic probability concepts statistics
Inferential statistics
Regression analysis
Experimental design and A/B testing Bayesian statistics
Calculus
Linear algebra
Python:
You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.
Variables, data types, and basic operations
Control flow statements (e.g., if-else, loops)
Functions and modules
Error handling and exceptions
Basic data structures (e.g., lists, dictionaries, tuples)
Object-oriented programming concepts
Basic work with APIs
Detailed data structures and algorithmic thinking
Machine Learning Prerequisites:
Exploratory Data Analysis (EDA) with NumPy and Pandas
Basic data visualization techniques to visualize the variables and features.
Feature extraction
Feature engineering
Different types of encoding data
Machine Learning Fundamentals
Using scikit-learn library in combination with other Python libraries for:
Supervised Learning: (Linear Regression, K-Nearest Neighbors, Decision Trees)
Unsupervised Learning: (K-Means Clustering, Principal Component Analysis, Hierarchical Clustering)
Reinforcement Learning: (Q-Learning, Deep Q Network, Policy Gradients)
Solving two types of problems:
Regression
Classification
Neural Networks:
Neural networks are like computer brains that learn from examples, made up of layers of "neurons" that handle data. They learn without explicit instructions.
Types of Neural Networks:
Feedforward Neural Networks: Simplest form, with straight connections and no loops.
Convolutional Neural Networks (CNNs): Great for images, learning visual patterns.
Recurrent Neural Networks (RNNs): Good for sequences like text or time series, because they remember past information.
In Python, it’s the best to use TensorFlow and Keras libraries, as well as PyTorch, for deeper and more complex neural network systems.
Deep Learning:
Deep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured or unlabeled.
Convolutional Neural Networks (CNNs)
Recurrent Neural Networks (RNNs)
Long Short-Term Memory Networks (LSTMs)
Generative Adversarial Networks (GANs)
Autoencoders
Deep Belief Networks (DBNs)
Transformer Models
Machine Learning Project Deployment
Machine learning engineers should also be able to dive into MLOps and project deployment. Here are the things that you should be familiar or skilled at:
Version Control for Data and Models
Automated Testing and Continuous Integration (CI)
Continuous Delivery and Deployment (CD)
Monitoring and Logging
Experiment Tracking and Management
Feature Stores
Data Pipeline and Workflow Orchestration
Infrastructure as Code (IaC)
Model Serving and APIs
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
👍1
Understanding Popular ML Algorithms:
1️⃣ Linear Regression: Think of it as drawing a straight line through data points to predict future outcomes.
2️⃣ Logistic Regression: Like a yes/no machine - it predicts the likelihood of something happening or not.
3️⃣ Decision Trees: Imagine making decisions by answering yes/no questions, leading to a conclusion.
4️⃣ Random Forest: It's like a group of decision trees working together, making more accurate predictions.
5️⃣ Support Vector Machines (SVM): Visualize drawing lines to separate different types of things, like cats and dogs.
6️⃣ K-Nearest Neighbors (KNN): Friends sticking together - if most of your friends like something, chances are you'll like it too!
7️⃣ Neural Networks: Inspired by the brain, they learn patterns from examples - perfect for recognizing faces or understanding speech.
8️⃣ K-Means Clustering: Imagine sorting your socks by color without knowing how many colors there are - it groups similar things.
9️⃣ Principal Component Analysis (PCA): Simplifies complex data by focusing on what's important, like summarizing a long story with just a few key points.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING 👍👍
1️⃣ Linear Regression: Think of it as drawing a straight line through data points to predict future outcomes.
2️⃣ Logistic Regression: Like a yes/no machine - it predicts the likelihood of something happening or not.
3️⃣ Decision Trees: Imagine making decisions by answering yes/no questions, leading to a conclusion.
4️⃣ Random Forest: It's like a group of decision trees working together, making more accurate predictions.
5️⃣ Support Vector Machines (SVM): Visualize drawing lines to separate different types of things, like cats and dogs.
6️⃣ K-Nearest Neighbors (KNN): Friends sticking together - if most of your friends like something, chances are you'll like it too!
7️⃣ Neural Networks: Inspired by the brain, they learn patterns from examples - perfect for recognizing faces or understanding speech.
8️⃣ K-Means Clustering: Imagine sorting your socks by color without knowing how many colors there are - it groups similar things.
9️⃣ Principal Component Analysis (PCA): Simplifies complex data by focusing on what's important, like summarizing a long story with just a few key points.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING 👍👍
👍2
🚀 Microsoft is offering some FREE courses 🚀
1️⃣ AI for beginners
Check this out 👇
http://microsoft.github.io/AI-For-Beginners
2️⃣ IOT
Check this out 👇
https://microsoft.github.io/IoT-For-Beginners
3️⃣ Machine Learning
Check this out👇
http://microsoft.github.io/ML-For-Beginners/#/
4️⃣ Data Science
Check this out👇
http://microsoft.github.io/Data-Science-For-Beginners/#/
Free Coding Courses 👇
https://news.1rj.ru/str/programming_guide
Few more courses ✅
𝟭.𝗗𝗮𝘁𝗮 𝗙𝘂𝗻𝗱𝗮𝗺𝗲𝗻𝘁𝗮𝗹𝘀
https://learn.microsoft.com/en-us/training/paths/azure-data-fundamentals-explore-non-relational-data/
𝟮.𝗦𝗾𝗹 𝗙𝘂𝗻𝗱𝗮𝗺𝗲𝗻𝘁𝗮𝗹𝘀
https://learn.microsoft.com/en-us/training/paths/azure-sql-fundamentals/
𝟯.𝗣𝗼𝘄𝗲𝗿 𝗕𝗜
https://learn.microsoft.com/en-us/training/paths/create-use-analvtics-reports-power-bi/
𝟰.𝗔𝘇𝘂𝗿𝗲 𝗰𝗼𝘀𝗺𝗼𝘀 𝗗𝗕
https://learn.microsoft.com/en-us/training/paths/create-use-analytics-reports-power-bi/
𝟱.𝗔𝗜 𝗳𝘂𝗻𝗱𝗮𝗺𝗲𝗻𝘁𝗮𝗹𝘀
https://learn.microsoft.com/en-us/training/paths/create-no-code-predictive-models-azure-machine-learning/
1️⃣ AI for beginners
Check this out 👇
http://microsoft.github.io/AI-For-Beginners
2️⃣ IOT
Check this out 👇
https://microsoft.github.io/IoT-For-Beginners
3️⃣ Machine Learning
Check this out👇
http://microsoft.github.io/ML-For-Beginners/#/
4️⃣ Data Science
Check this out👇
http://microsoft.github.io/Data-Science-For-Beginners/#/
Free Coding Courses 👇
https://news.1rj.ru/str/programming_guide
Few more courses ✅
𝟭.𝗗𝗮𝘁𝗮 𝗙𝘂𝗻𝗱𝗮𝗺𝗲𝗻𝘁𝗮𝗹𝘀
https://learn.microsoft.com/en-us/training/paths/azure-data-fundamentals-explore-non-relational-data/
𝟮.𝗦𝗾𝗹 𝗙𝘂𝗻𝗱𝗮𝗺𝗲𝗻𝘁𝗮𝗹𝘀
https://learn.microsoft.com/en-us/training/paths/azure-sql-fundamentals/
𝟯.𝗣𝗼𝘄𝗲𝗿 𝗕𝗜
https://learn.microsoft.com/en-us/training/paths/create-use-analvtics-reports-power-bi/
𝟰.𝗔𝘇𝘂𝗿𝗲 𝗰𝗼𝘀𝗺𝗼𝘀 𝗗𝗕
https://learn.microsoft.com/en-us/training/paths/create-use-analytics-reports-power-bi/
𝟱.𝗔𝗜 𝗳𝘂𝗻𝗱𝗮𝗺𝗲𝗻𝘁𝗮𝗹𝘀
https://learn.microsoft.com/en-us/training/paths/create-no-code-predictive-models-azure-machine-learning/
👍1
Machine Learning isn't easy!
It’s the field that powers intelligent systems and predictive models.
To truly master Machine Learning, focus on these key areas:
0. Understanding the Basics of Algorithms: Learn about linear regression, decision trees, and k-nearest neighbors to build a solid foundation.
1. Mastering Data Preprocessing: Clean, normalize, and handle missing data to prepare your datasets for training.
2. Learning Supervised Learning Techniques: Dive deep into classification and regression models, such as SVMs, random forests, and logistic regression.
3. Exploring Unsupervised Learning: Understand clustering techniques (K-means, hierarchical) and dimensionality reduction (PCA, t-SNE).
4. Mastering Model Evaluation: Use techniques like cross-validation, confusion matrices, ROC curves, and F1 scores to assess model performance.
5. Understanding Overfitting and Underfitting: Learn how to balance bias and variance to build robust models.
6. Optimizing Hyperparameters: Use grid search, random search, and Bayesian optimization to fine-tune your models for better performance.
7. Diving into Neural Networks and Deep Learning: Explore deep learning with frameworks like TensorFlow and PyTorch to create advanced models like CNNs and RNNs.
8. Working with Natural Language Processing (NLP): Master text data, sentiment analysis, and techniques like word embeddings and transformers.
9. Staying Updated with New Techniques: Machine learning evolves rapidly—keep up with emerging models, techniques, and research.
Machine learning is about learning from data and improving models over time.
💡 Embrace the challenges of building algorithms, experimenting with data, and solving complex problems.
⏳ With time, practice, and persistence, you’ll develop the expertise to create systems that learn, predict, and adapt.
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
#datascience
It’s the field that powers intelligent systems and predictive models.
To truly master Machine Learning, focus on these key areas:
0. Understanding the Basics of Algorithms: Learn about linear regression, decision trees, and k-nearest neighbors to build a solid foundation.
1. Mastering Data Preprocessing: Clean, normalize, and handle missing data to prepare your datasets for training.
2. Learning Supervised Learning Techniques: Dive deep into classification and regression models, such as SVMs, random forests, and logistic regression.
3. Exploring Unsupervised Learning: Understand clustering techniques (K-means, hierarchical) and dimensionality reduction (PCA, t-SNE).
4. Mastering Model Evaluation: Use techniques like cross-validation, confusion matrices, ROC curves, and F1 scores to assess model performance.
5. Understanding Overfitting and Underfitting: Learn how to balance bias and variance to build robust models.
6. Optimizing Hyperparameters: Use grid search, random search, and Bayesian optimization to fine-tune your models for better performance.
7. Diving into Neural Networks and Deep Learning: Explore deep learning with frameworks like TensorFlow and PyTorch to create advanced models like CNNs and RNNs.
8. Working with Natural Language Processing (NLP): Master text data, sentiment analysis, and techniques like word embeddings and transformers.
9. Staying Updated with New Techniques: Machine learning evolves rapidly—keep up with emerging models, techniques, and research.
Machine learning is about learning from data and improving models over time.
💡 Embrace the challenges of building algorithms, experimenting with data, and solving complex problems.
⏳ With time, practice, and persistence, you’ll develop the expertise to create systems that learn, predict, and adapt.
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
#datascience
👍1
The Only SQL You Actually Need For Your First Job (Data Analytics)
The Learning Trap: What Most Beginners Fall Into
When starting out, it's common to feel like you need to master every possible SQL concept. You binge YouTube videos, tutorials, and courses, yet still feel lost in interviews or when given a real dataset.
Common traps:
- Complex subqueries
- Advanced CTEs
- Recursive queries
- 100+ tutorials watched
- 0 practical experience
Reality Check: What You'll Actually Use 75% of the Time
Most data analytics roles (especially entry-level) require clarity, speed, and confidence with core SQL operations. Here’s what covers most daily work:
1. SELECT, FROM, WHERE — The Foundation
SELECT name, age
FROM employees
WHERE department = 'Finance';
This is how almost every query begins. Whether exploring a dataset or building a dashboard, these are always in use.
2. JOINs — Combining Data From Multiple Tables
SELECT e.name, d.department_name
FROM employees e
JOIN departments d ON e.department_id = d.id;
You’ll often join tables like employee data with department, customer orders with payments, etc.
3. GROUP BY — Summarizing Data
SELECT department, COUNT(*) AS employee_count
FROM employees
GROUP BY department;
Used to get summaries by categories like sales per region or users by plan.
4. ORDER BY — Sorting Results
SELECT name, salary
FROM employees
ORDER BY salary DESC;
Helps sort output for dashboards or reports.
5. Aggregations — Simple But Powerful
Common functions: COUNT(), SUM(), AVG(), MIN(), MAX()
SELECT AVG(salary)
FROM employees
WHERE department = 'IT';
Gives quick insights like average deal size or total revenue.
6. ROW_NUMBER() — Adding Row Logic
SELECT *
FROM (
SELECT *, ROW_NUMBER() OVER(PARTITION BY customer_id ORDER BY order_date DESC) as rn
FROM orders
) sub
WHERE rn = 1;
Used for deduplication, rankings, or selecting the latest record per group.
Credits: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
React ❤️ for more
The Learning Trap: What Most Beginners Fall Into
When starting out, it's common to feel like you need to master every possible SQL concept. You binge YouTube videos, tutorials, and courses, yet still feel lost in interviews or when given a real dataset.
Common traps:
- Complex subqueries
- Advanced CTEs
- Recursive queries
- 100+ tutorials watched
- 0 practical experience
Reality Check: What You'll Actually Use 75% of the Time
Most data analytics roles (especially entry-level) require clarity, speed, and confidence with core SQL operations. Here’s what covers most daily work:
1. SELECT, FROM, WHERE — The Foundation
SELECT name, age
FROM employees
WHERE department = 'Finance';
This is how almost every query begins. Whether exploring a dataset or building a dashboard, these are always in use.
2. JOINs — Combining Data From Multiple Tables
SELECT e.name, d.department_name
FROM employees e
JOIN departments d ON e.department_id = d.id;
You’ll often join tables like employee data with department, customer orders with payments, etc.
3. GROUP BY — Summarizing Data
SELECT department, COUNT(*) AS employee_count
FROM employees
GROUP BY department;
Used to get summaries by categories like sales per region or users by plan.
4. ORDER BY — Sorting Results
SELECT name, salary
FROM employees
ORDER BY salary DESC;
Helps sort output for dashboards or reports.
5. Aggregations — Simple But Powerful
Common functions: COUNT(), SUM(), AVG(), MIN(), MAX()
SELECT AVG(salary)
FROM employees
WHERE department = 'IT';
Gives quick insights like average deal size or total revenue.
6. ROW_NUMBER() — Adding Row Logic
SELECT *
FROM (
SELECT *, ROW_NUMBER() OVER(PARTITION BY customer_id ORDER BY order_date DESC) as rn
FROM orders
) sub
WHERE rn = 1;
Used for deduplication, rankings, or selecting the latest record per group.
Credits: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
React ❤️ for more