Как все представляют завтрак разработчика в 2026 году 🤩
На самом деле утро начинается с мысли: «Как кодить еще лучше?»
Если вы уже освоили базу по Python и ищете зону роста, пройдите бесплатный мини-курс в Академии Selectel.
В программе:
🔸 набор Python-инструментов и расширений, которые ускоряют кодинг;
🔸 гайд по работе с библиотекой Tkinter, чтобы создавать приложения с графическим интерфейсом;
🔸 инструкция по основам парсинга данных с веб-сайтов и многое другое.
Закрепить полученные знания вы сможете тут же — эксперты собрали базу задач с готовыми ответами.
Все материалы бесплатные. До роскошного IT-завтрака осталось пройти курс в удобное время: https://slc.tl/leedt?2W5zFGhkak8
На самом деле утро начинается с мысли: «Как кодить еще лучше?»
Если вы уже освоили базу по Python и ищете зону роста, пройдите бесплатный мини-курс в Академии Selectel.
В программе:
🔸 набор Python-инструментов и расширений, которые ускоряют кодинг;
🔸 гайд по работе с библиотекой Tkinter, чтобы создавать приложения с графическим интерфейсом;
🔸 инструкция по основам парсинга данных с веб-сайтов и многое другое.
Закрепить полученные знания вы сможете тут же — эксперты собрали базу задач с готовыми ответами.
Все материалы бесплатные. До роскошного IT-завтрака осталось пройти курс в удобное время: https://slc.tl/leedt?2W5zFGhkak8
❤8🔥3😱1🤩1
🎨 Генерация изображений с GLM-Image
GLM-Image — это мощная модель генерации изображений, использующая гибридную архитектуру автогрессивного и диффузионного декодера. Она превосходно справляется с задачами текстового рендеринга и генерации сложной информации, обеспечивая высокое качество изображений и детальную проработку.
🚀 Основные моменты:
- Поддержка генерации изображений из текста и редактирования изображений.
- Высокая точность рендеринга текста и семантического понимания.
- Модуль обратной связи для улучшения эстетики и детализации.
- Подходит для задач с высокой информационной плотностью.
📌 GitHub: https://github.com/zai-org/GLM-Image
GLM-Image — это мощная модель генерации изображений, использующая гибридную архитектуру автогрессивного и диффузионного декодера. Она превосходно справляется с задачами текстового рендеринга и генерации сложной информации, обеспечивая высокое качество изображений и детальную проработку.
🚀 Основные моменты:
- Поддержка генерации изображений из текста и редактирования изображений.
- Высокая точность рендеринга текста и семантического понимания.
- Модуль обратной связи для улучшения эстетики и детализации.
- Подходит для задач с высокой информационной плотностью.
📌 GitHub: https://github.com/zai-org/GLM-Image
❤9👍4🔥3
Ты научишься делать те, которые живут в проде.
Это не про BeautifulSoup ради галочки.
Это про системы сбора данных, которые:
• не падают от мелких правок на сайте
• собирают данные в разы быстрее
• обновляют всё сами по расписанию
• обходят ограничения и баны
• выглядят как сервис, а не хаос из файлов
Ты начнёшь видеть сайты не как страницы, а как источники данных, к которым можно подключиться.
В итоге ты сможешь:
• забирать данные для своих проектов
• автоматизировать чужую рутину
• делать инструменты для аналитики
• брать коммерческие заказы на сбор данных
Это навык, который напрямую превращается в деньги.
Не “знаю Python”, а умею добывать данные из интернета профессионально.
🎁 48 часов скидка 50% на Stepik: https://stepik.org/a/269942/
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤5🔥4
This media is not supported in your browser
VIEW IN TELEGRAM
✔ NVIDIA показала новый разговорный ИИ - PersonaPlex
Суть фичи в том, что модель старается звучать максимально “живым” собеседником, а не просто отвечать по очереди.
Что умеет PersonaPlex:
· Переключать стиль общения (persona) - например строгий учитель, дружелюбный консультант, бармен и т.д.
· Говорить и слушать одновременно - меньше задержек и пауз в диалоге
· Поддакивать на фоне (“угу”, “ок”, “понятно”), пока человек говорит - чтобы разговор был ближе к реальному
· Проект открыт - исходники доступны, можно брать и пробовать самому
▪GitHub
▪Hugging Face
Суть фичи в том, что модель старается звучать максимально “живым” собеседником, а не просто отвечать по очереди.
Что умеет PersonaPlex:
· Переключать стиль общения (persona) - например строгий учитель, дружелюбный консультант, бармен и т.д.
· Говорить и слушать одновременно - меньше задержек и пауз в диалоге
· Поддакивать на фоне (“угу”, “ок”, “понятно”), пока человек говорит - чтобы разговор был ближе к реальному
· Проект открыт - исходники доступны, можно брать и пробовать самому
▪GitHub
▪Hugging Face
👍20❤11🔥7😁3
Знания кода недостаточно: как сохранить и поднять свою ценность в IT
О волне сокращений заговорили ещё в прошлом году: IBM, Microsoft, Amazon и другие гиганты стали постепенно заменять сотрудников нейросетями. Сейчас можем оценить первые результаты - по данным консалтинговой компании Challenger, Gray & Christmas, ИИ стал причиной почти 55 000 увольнений в США в 2025 году.
И это касается не только сотрудников поддержки: компании всё чаще делегируют нейросетям простой код. Сейчас до 30% внутренней разработки в Microsoft и Google лежит на ИИ, а та же Claude уже превосходит программистов в техсобесах.
Пока ИИ берёт на себя рутину, ценность человека смещается в сторону интерпретации, приоритизации и влияния на решения - того, что по-прежнему нельзя автоматизировать полностью.
А это значит, что сейчас самое время дополнять стек не новыми языками программирования, а умением связывать технологии с потребностями бизнеса.
Если хотите выделиться на рынке и не пасть жертвой ИИ-сокращений, усильте свои компетенции на курсе "Аналитик данных" от Академии Eduson.
Что внутри:
- 419 коротких уроков по всему необходимому: от Excel, SQL, BI до презентации результатов.
- Модуль по профильным нейросетям для аналитики.
- 10+ практических кейсов для портфолио.
- Онлайн-формат без дедлайнов и бессрочный доступ к обновлениям.
- Личный куратор на 365 дней.
- Лекции от экспертов-практиков из "Яндекса", Datalatte, Softline, "Работа.ру".
- Диплом о профпереподготовке и гарантия содействия трудоустройству: если не найдёте работу - вернут деньги, это прописано в договоре.
Курс также подойдёт самоучкам, которые хотят систематизировать знания основ Python и войти в IT с востребованной специализацией.
Оставить заявку можно здесь. По промокоду
Реклама. ООО "Эдюсон", ИНН 7729779476, 2W5zFFvJXcc
О волне сокращений заговорили ещё в прошлом году: IBM, Microsoft, Amazon и другие гиганты стали постепенно заменять сотрудников нейросетями. Сейчас можем оценить первые результаты - по данным консалтинговой компании Challenger, Gray & Christmas, ИИ стал причиной почти 55 000 увольнений в США в 2025 году.
И это касается не только сотрудников поддержки: компании всё чаще делегируют нейросетям простой код. Сейчас до 30% внутренней разработки в Microsoft и Google лежит на ИИ, а та же Claude уже превосходит программистов в техсобесах.
Пока ИИ берёт на себя рутину, ценность человека смещается в сторону интерпретации, приоритизации и влияния на решения - того, что по-прежнему нельзя автоматизировать полностью.
А это значит, что сейчас самое время дополнять стек не новыми языками программирования, а умением связывать технологии с потребностями бизнеса.
Если хотите выделиться на рынке и не пасть жертвой ИИ-сокращений, усильте свои компетенции на курсе "Аналитик данных" от Академии Eduson.
Что внутри:
- 419 коротких уроков по всему необходимому: от Excel, SQL, BI до презентации результатов.
- Модуль по профильным нейросетям для аналитики.
- 10+ практических кейсов для портфолио.
- Онлайн-формат без дедлайнов и бессрочный доступ к обновлениям.
- Личный куратор на 365 дней.
- Лекции от экспертов-практиков из "Яндекса", Datalatte, Softline, "Работа.ру".
- Диплом о профпереподготовке и гарантия содействия трудоустройству: если не найдёте работу - вернут деньги, это прописано в договоре.
Курс также подойдёт самоучкам, которые хотят систематизировать знания основ Python и войти в IT с востребованной специализацией.
Оставить заявку можно здесь. По промокоду
PYTHON получите скидку 55% и второй курс на выбор в подарок: сможете прокачать ещё больше навыков или порадовать кого-то из близких.Реклама. ООО "Эдюсон", ИНН 7729779476, 2W5zFFvJXcc
😁14❤7
🔍 PaddleOCR-VL-1.5 внезапно ворвался в топ open-source OCR - и при этом модель всего на 0.9B параметров.
Фактически это сейчас один из самых сильных открытых инструментов для распознавания текста и понимания документов - при очень скромном размере по меркам современных AI-моделей.
Ирония в тайминге:
• Сначала вышел Kimi 2.5
• Потом DeepSeekOCR-2
• И буквально следом - PaddleOCR-VL-1.5
Неделя просто взрывная для направления AI, которое занимается документами: сканы, PDF, таблицы, формы, смешанный текст и структура.
Что особенно интересно - это не просто классический OCR "картинка → текст", а визуально-языковая модель. То есть она лучше понимает структуру документа: блоки, таблицы, взаимосвязи между элементами, а не только символы.
Для разработчиков это означает более точный парсинг документов, автоматизацию работы с формами, счетами, договорами, отчетами и любыми полу-структурированными файлами - и все это на базе полностью открытой модели.
Порог входа в продвинутую document AI снова стал ниже.
huggingface.co/PaddlePaddle/PaddleOCR-VL-1.5
@pythonl
Фактически это сейчас один из самых сильных открытых инструментов для распознавания текста и понимания документов - при очень скромном размере по меркам современных AI-моделей.
Ирония в тайминге:
• Сначала вышел Kimi 2.5
• Потом DeepSeekOCR-2
• И буквально следом - PaddleOCR-VL-1.5
Неделя просто взрывная для направления AI, которое занимается документами: сканы, PDF, таблицы, формы, смешанный текст и структура.
Что особенно интересно - это не просто классический OCR "картинка → текст", а визуально-языковая модель. То есть она лучше понимает структуру документа: блоки, таблицы, взаимосвязи между элементами, а не только символы.
Для разработчиков это означает более точный парсинг документов, автоматизацию работы с формами, счетами, договорами, отчетами и любыми полу-структурированными файлами - и все это на базе полностью открытой модели.
Порог входа в продвинутую document AI снова стал ниже.
huggingface.co/PaddlePaddle/PaddleOCR-VL-1.5
@pythonl
👍15❤8🔥5
This media is not supported in your browser
VIEW IN TELEGRAM
Когда папка разрастается, дубликаты начинают тихо съедать место - особенно если ты сохраняешь одно и то же под разными именами.
Быстрый способ на Python - посчитать хеш каждого файла и собрать группы с одинаковым хешем. Так ты сразу увидишь, какие файлы реально одинаковые по содержимому, а не только по названию.
import os, hashlib
m = {}
for n in os.listdir("."):
if os.path.isfile(n):
with open(n, "rb") as f:
h = hashlib.md5(f.read()).hexdigest()
m.setdefault(h, []).append(n)
for v in m.values():
if len(v) > 1:
print("DUP:", v)
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14🔥9❤8😱1
🚀 RenderCV: Open-Source AI для создания CV/резюме на лету
RenderCV - это GitHub-проект, который автоматизирует генерацию профессионального резюме с помощью AI. Он берет базовые данные (например, профиль, опыт, навыки) и формирует красиво отформатированный CV с умным распределением разделов, прицелом на ATS-системы (системы автоматического трекинга резюме) и внимание к деталям.
🔍 Основные фишки
- 💡 AI-генерация контента - на основе вводимых данных автоматически создаются описания опыта, навыков и достижений
- 📄 Готовые шаблоны — вывод резюме в структурированном виде, готовом для печати или публикации
- ⚙️ Настраиваемость — легко адаптировать под свой стиль, менять поля и формат
- 🤖 Поддержка AI-логики для переработки сухих фактов в интересные, читабельные формулировки
Простой рабочий цикл:
1) Вводишь базовые данные (имя, опыт, навыки)
2) AI дописывает грамотные описания
3) Получаешь готовое резюме без лишних усилий
💡 Это особенно полезно начинающим специалистам, карьерным переходам или тем, кто не любит вручную вырезать и править резюме перед каждой подачей.
🛠 Пример использования (в духе проектов этого класса):
https://github.com/rendercv/rendercv
RenderCV - это GitHub-проект, который автоматизирует генерацию профессионального резюме с помощью AI. Он берет базовые данные (например, профиль, опыт, навыки) и формирует красиво отформатированный CV с умным распределением разделов, прицелом на ATS-системы (системы автоматического трекинга резюме) и внимание к деталям.
🔍 Основные фишки
- 💡 AI-генерация контента - на основе вводимых данных автоматически создаются описания опыта, навыков и достижений
- 📄 Готовые шаблоны — вывод резюме в структурированном виде, готовом для печати или публикации
- ⚙️ Настраиваемость — легко адаптировать под свой стиль, менять поля и формат
- 🤖 Поддержка AI-логики для переработки сухих фактов в интересные, читабельные формулировки
Простой рабочий цикл:
1) Вводишь базовые данные (имя, опыт, навыки)
2) AI дописывает грамотные описания
3) Получаешь готовое резюме без лишних усилий
💡 Это особенно полезно начинающим специалистам, карьерным переходам или тем, кто не любит вручную вырезать и править резюме перед каждой подачей.
🛠 Пример использования (в духе проектов этого класса):
# Клонируем репозиторий
git clone https://github.com/rendercv/rendercv.git
# Переходим в папку
cd rendercv
# Устанавливаем зависимости и запускаем
# (инструкции могут отличаться в зависимости от реализации)
npm install
npm start
https://github.com/rendercv/rendercv
❤6👍4🔥2🤩1
This media is not supported in your browser
VIEW IN TELEGRAM
Ппрофессиональный подход к математике в Python строится не вокруг «посчитать формулу», а вокруг правильного стека инструментов и воспроизводимости. Всегда разделяй символьную математику, численные методы и работу с данными.
Для аналитики и вывода формул используй SymPy, для быстрых численных расчётов - NumPy, для научных алгоритмов - SciPy, для больших таблиц экспериментов - Pandas.
Никогда не смешивай «магические числа» в коде - все параметры выноси в переменные. Работай в Jupyter или VS Code с ноутбуками, фиксируй версии библиотек и обязательно проверяй устойчивость решений через разные методы (например, интеграл численно и аналитически). Так код становится не просто расчётом, а научным инструментом.
import numpy as np
import sympy as sp
from scipy import integrate
# 1. Символьная математика
x = sp.symbols('x')
expr = sp.sin(x) / x
analytic_integral = sp.integrate(expr, (x, 1, 10))
# 2. Численная математика
f = lambda x: np.sin(x) / x
numeric_integral, error = integrate.quad(f, 1, 10)
# 3. Векторизация вместо циклов
arr = np.linspace(1, 10, 1_000_000)
fast_result = np.sin(arr) / arr
print("Analytic:", analytic_integral)
print("Numeric:", numeric_integral, "Error:", error)
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10🔥7👍4
⚡️ Хотите собрать своего личного JARVIS, но Clawdbot кажется слишком сложным для развёртывания и понимания?
Попробуйте - nanobot: ультралёгкая версия Clawdbot (на 99% проще), которая поднимает персонального AI-ассистента меньше чем за минуту.
⚡️ Базовый функционал всего в ~4 000 строк Python - против 400k+ строк у Clawdbot.
Ключевые особенности nanobot:
🪶 Ультралёгкий — ~4 000 строк кода, только ядро без перегруза.
🔬 Удобен для исследований — чистый, понятный код, легко менять и расширять.
⚡️ Быстрый — минимальный размер = быстрый старт, меньше ресурсов, быстрые итерации.
💎 Простой в использовании — один запуск, и ассистент уже работает.
Что умеет nanobot:
📈 24/7 анализ рынка в реальном времени — мониторинг и инсайты.
🚀 Full-stack софт-инженер — помощь в разработке от идеи до продакшена.
📅 Умный менеджер рутины — помогает организовать день и задачи.
📚 Персональный ассистент по знаниям — хранение, поиск и работа с информацией.
Если хочется своего AI-агента без монструозной инфраструктуры — это именно тот старт, который нужен.
🔗 Open Source: https://github.com/HKUDS/nanobot
🔗Video: https://www.youtube.com/shorts/Wx2RBCnl5nU
#Clawdbot #AIAssistant #Agents
@pythonl
Попробуйте - nanobot: ультралёгкая версия Clawdbot (на 99% проще), которая поднимает персонального AI-ассистента меньше чем за минуту.
⚡️ Базовый функционал всего в ~4 000 строк Python - против 400k+ строк у Clawdbot.
Ключевые особенности nanobot:
🪶 Ультралёгкий — ~4 000 строк кода, только ядро без перегруза.
🔬 Удобен для исследований — чистый, понятный код, легко менять и расширять.
⚡️ Быстрый — минимальный размер = быстрый старт, меньше ресурсов, быстрые итерации.
💎 Простой в использовании — один запуск, и ассистент уже работает.
Что умеет nanobot:
📈 24/7 анализ рынка в реальном времени — мониторинг и инсайты.
🚀 Full-stack софт-инженер — помощь в разработке от идеи до продакшена.
📅 Умный менеджер рутины — помогает организовать день и задачи.
📚 Персональный ассистент по знаниям — хранение, поиск и работа с информацией.
Если хочется своего AI-агента без монструозной инфраструктуры — это именно тот старт, который нужен.
🔗 Open Source: https://github.com/HKUDS/nanobot
🔗Video: https://www.youtube.com/shorts/Wx2RBCnl5nU
#Clawdbot #AIAssistant #Agents
@pythonl
❤6👍4🔥3
Команды Яндекса ищут продуктовых и data-аналитиков, а также data scientists с опытом на Python от 3 лет.
Участвуйте в Weekend Offer, чтобы всего за 2 дня пройти все собеседования и получить офер.
Как участвовать?
⚪ Зарегистрироваться на сайте до 25 февраля.
⚪ Пройти две технические секции 28 февраля.
⚪ Познакомиться с командами и получить офер 1 марта.
Мы опираемся на научные исследования и аналитические данные, а потом превращаем их в реальные продукты для миллионов пользователей. Присоединяйтесь, чтобы строить полезные сервисы вокруг ИИ-технологий, находить новые решения и делать то, что другим не по силам.
Подробности и регистрация — по ссылке: https://yandex.ru/project/events/wo-analytics-0226
Участвуйте в Weekend Offer, чтобы всего за 2 дня пройти все собеседования и получить офер.
Как участвовать?
Мы опираемся на научные исследования и аналитические данные, а потом превращаем их в реальные продукты для миллионов пользователей. Присоединяйтесь, чтобы строить полезные сервисы вокруг ИИ-технологий, находить новые решения и делать то, что другим не по силам.
Подробности и регистрация — по ссылке: https://yandex.ru/project/events/wo-analytics-0226
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8👍3🔥2😁2
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 С этим проектом, вы можете клонировать голоса, которые звучат по-настоящему живо.
Без робо-голоса. Без “синтетики”.
Полноценная, естественная человеческая речь.
Речь о модели на 1.7B параметров, заточенной под чистую и выразительную генерацию голоса.
Это уже не просто TTS.
Это высокоточное клонирование голоса с передачей интонаций, ритма и естественного звучания.
Разница между “голосом ИИ” и “голосом человека” стремительно исчезает.
Если ты работаешь с аудио, AI-ассистентами, агентами или медиа-инструментами - это серьёзно расширяет возможности.
Модель: https://huggingface.co/Qwen/Qwen3-TTS-12Hz-1.7B-CustomVoice
Без робо-голоса. Без “синтетики”.
Полноценная, естественная человеческая речь.
Речь о модели на 1.7B параметров, заточенной под чистую и выразительную генерацию голоса.
Это уже не просто TTS.
Это высокоточное клонирование голоса с передачей интонаций, ритма и естественного звучания.
Разница между “голосом ИИ” и “голосом человека” стремительно исчезает.
Если ты работаешь с аудио, AI-ассистентами, агентами или медиа-инструментами - это серьёзно расширяет возможности.
Модель: https://huggingface.co/Qwen/Qwen3-TTS-12Hz-1.7B-CustomVoice
❤6👍4🔥3