Data Science Projects – Telegram
Data Science Projects
53.1K subscribers
382 photos
1 video
57 files
333 links
Perfect channel for Data Scientists

Learn Python, AI, R, Machine Learning, Data Science and many more

Admin: @love_data
Download Telegram
Complete SQL road map
👇👇

1.Intro to SQL
• Definition
• Purpose
• Relational DBs
• DBMS

2.Basic SQL Syntax
• SELECT
• FROM
• WHERE
• ORDER BY
• GROUP BY

3. Data Types
• Integer
• Floating-Point
• Character
• Date
• VARCHAR
• TEXT
• BLOB
• BOOLEAN

4.Sub languages
• DML
• DDL
• DQL
• DCL
• TCL

5. Data Manipulation
• INSERT
• UPDATE
• DELETE

6. Data Definition
• CREATE
• ALTER
• DROP
• Indexes

7.Query Filtering and Sorting
• WHERE
• AND
• OR Conditions
• Ascending
• Descending

8. Data Aggregation
• SUM
• AVG
• COUNT
• MIN
• MAX

9.Joins and Relationships
• INNER JOIN
• LEFT JOIN
• RIGHT JOIN
• Self-Joins
• Cross Joins
• FULL OUTER JOIN

10.Subqueries
• Subqueries used in
• Filtering data
• Aggregating data
• Joining tables
• Correlated Subqueries

11.Views
• Creating
• Modifying
• Dropping Views

12.Transactions
• ACID Properties
• COMMIT
• ROLLBACK
• SAVEPOINT
• ROLLBACK TO SAVEPOINT

13.Stored Procedures
• CREATE PROCEDURE
• ALTER PROCEDURE
• DROP PROCEDURE
• EXECUTE PROCEDURE
• User-Defined Functions (UDFs)

14.Triggers
• Trigger Events
• Trigger Execution and Syntax

15. Security and Permissions
• CREATE USER
• GRANT
• REVOKE
• ALTER USER
• DROP USER

16.Optimizations
• Indexing Strategies
• Query Optimization

17.Normalization
• 1NF(Normal Form)
• 2NF
• 3NF
• BCNF

18.Backup and Recovery
• Database Backups
• Point-in-Time Recovery

19.NoSQL Databases
• MongoDB
• Cassandra etc...
• Key differences

20. Data Integrity
• Primary Key
• Foreign Key

21.Advanced SQL Queries
• Window Functions
• Common Table Expressions (CTEs)

22.Full-Text Search
• Full-Text Indexes
• Search Optimization

23. Data Import and Export
• Importing Data
• Exporting Data (CSV, JSON)
• Using SQL Dump Files

24.Database Design
• Entity-Relationship Diagrams
• Normalization Techniques

25.Advanced Indexing
• Composite Indexes
• Covering Indexes

26.Database Transactions
• Savepoints
• Nested Transactions
• Two-Phase Commit Protocol

27.Performance Tuning
• Query Profiling and Analysis
• Query Cache Optimization

------------------ END -------------------

Some good resources to learn SQL

1.Tutorial & Courses
• Learn SQL: https://bit.ly/3FxxKPz
• Udacity: imp.i115008.net/AoAg7K

2. YouTube Channel's
• FreeCodeCamp:rb.gy/pprz73
• Programming with Mosh: rb.gy/g62hpe

3. Books
• SQL in a Nutshell: https://news.1rj.ru/str/DataAnalystInterview/158

4. SQL Interview Questions
https://news.1rj.ru/str/sqlanalyst/72

Join @free4unow_backup for more free resourses

ENJOY LEARNING 👍👍
4
Machine Learning Algorithms every data scientist should know:

📌 Supervised Learning:

🔹 Regression
∟ Linear Regression
∟ Ridge & Lasso Regression
∟ Polynomial Regression

🔹 Classification
∟ Logistic Regression
∟ K-Nearest Neighbors (KNN)
∟ Decision Tree
∟ Random Forest
∟ Support Vector Machine (SVM)
∟ Naive Bayes
∟ Gradient Boosting (XGBoost, LightGBM, CatBoost)


📌 Unsupervised Learning:

🔹 Clustering
∟ K-Means
∟ Hierarchical Clustering
∟ DBSCAN

🔹 Dimensionality Reduction
∟ PCA (Principal Component Analysis)
∟ t-SNE
∟ LDA (Linear Discriminant Analysis)


📌 Reinforcement Learning (Basics):
∟ Q-Learning
∟ Deep Q Network (DQN)


📌 Ensemble Techniques:
∟ Bagging (Random Forest)
∟ Boosting (XGBoost, AdaBoost, Gradient Boosting)
∟ Stacking

Don’t forget to learn model evaluation metrics: accuracy, precision, recall, F1-score, AUC-ROC, confusion matrix, etc.

Free Machine Learning Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

React ❤️ for more free resources
3
SQL beginner to advanced level
3
Random Module in Python 👆
3👍1
Data Analyst Roadmap

Like if it helps ❤️
1