Machine Learning Algorithms every data scientist should know:
📌 Supervised Learning:
🔹 Regression
∟ Linear Regression
∟ Ridge & Lasso Regression
∟ Polynomial Regression
🔹 Classification
∟ Logistic Regression
∟ K-Nearest Neighbors (KNN)
∟ Decision Tree
∟ Random Forest
∟ Support Vector Machine (SVM)
∟ Naive Bayes
∟ Gradient Boosting (XGBoost, LightGBM, CatBoost)
📌 Unsupervised Learning:
🔹 Clustering
∟ K-Means
∟ Hierarchical Clustering
∟ DBSCAN
🔹 Dimensionality Reduction
∟ PCA (Principal Component Analysis)
∟ t-SNE
∟ LDA (Linear Discriminant Analysis)
📌 Reinforcement Learning (Basics):
∟ Q-Learning
∟ Deep Q Network (DQN)
📌 Ensemble Techniques:
∟ Bagging (Random Forest)
∟ Boosting (XGBoost, AdaBoost, Gradient Boosting)
∟ Stacking
Don’t forget to learn model evaluation metrics: accuracy, precision, recall, F1-score, AUC-ROC, confusion matrix, etc.
Free Machine Learning Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
React ❤️ for more free resources
📌 Supervised Learning:
🔹 Regression
∟ Linear Regression
∟ Ridge & Lasso Regression
∟ Polynomial Regression
🔹 Classification
∟ Logistic Regression
∟ K-Nearest Neighbors (KNN)
∟ Decision Tree
∟ Random Forest
∟ Support Vector Machine (SVM)
∟ Naive Bayes
∟ Gradient Boosting (XGBoost, LightGBM, CatBoost)
📌 Unsupervised Learning:
🔹 Clustering
∟ K-Means
∟ Hierarchical Clustering
∟ DBSCAN
🔹 Dimensionality Reduction
∟ PCA (Principal Component Analysis)
∟ t-SNE
∟ LDA (Linear Discriminant Analysis)
📌 Reinforcement Learning (Basics):
∟ Q-Learning
∟ Deep Q Network (DQN)
📌 Ensemble Techniques:
∟ Bagging (Random Forest)
∟ Boosting (XGBoost, AdaBoost, Gradient Boosting)
∟ Stacking
Don’t forget to learn model evaluation metrics: accuracy, precision, recall, F1-score, AUC-ROC, confusion matrix, etc.
Free Machine Learning Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
React ❤️ for more free resources
❤3