Пару недель назад побывал на митапе от агентства АЭРО на тему «Иерархия метрик как основа data-driven подхода».
СРО Миша Зотов и DA-тимлид Егор Лысянский рассказали о своем опыте, подходах к внедрению метрик, из чего состоит основа иерархии и как взаимосвязаны натуральные и синтетические метрики.
Было интересно! Эта тема захватывает меня все больше и уже завтра ждите новый пост про #метрики.
СРО Миша Зотов и DA-тимлид Егор Лысянский рассказали о своем опыте, подходах к внедрению метрик, из чего состоит основа иерархии и как взаимосвязаны натуральные и синтетические метрики.
Было интересно! Эта тема захватывает меня все больше и уже завтра ждите новый пост про #метрики.
❤19👍1
После нахождения NSM самое время построить древо метрик.
Древо или иерархия метрик – это фреймворк для иерархии и классификации метрик, которые выстраиваются от ключевой метрики продукта (NSM).
Цель фреймворка:
🔹держать фокус на значимых метриках;
🔹определить слабые места;
🔹внедрять фичи, развивающие продукт в желаемом направлении.
Алгоритм построения:
1️⃣ Начинаем «с головы», то есть с нахождения NSM. Я рассказал один из способов выше, а также поделился полезной книгой.
2️⃣ Далее определяем 3-5 входных метрик или KPI, которые напрямую влияют на NSM: если KPI растут, то растет и NSM. Они образуют I уровень иерархии. Если вы нашли свою NSM, то скорей всего уже знаете KPI продукта.
3️⃣ Чтобы подобрать «дочерние» метрики II уровня, к каждому KPI задаем вопрос: Какие показатели влияют на значение метрики?
4️⃣ Этот же вопрос мы задаем к метрикам на уровне II и определяем метрики уровня III. В зависимости от сложности продукта продолжайте раскопки до уровня IV-V.
В итоге мы получаем перевернутое дерево, в котором вышележащие метрики ветвятся на определяющие их дочерние. Древо строится согласно концепции MindMap: каждая мысль на карте порождает новые идеи, логически вытекающие из нее.
Советы:
✔️Хорошее древо – это то, где вышележащая метрика зависит только от своих дочерних метрик. Важно учесть все дочерние показатели.
✔️Не стоит напрямую связывать дочерние метрики с несколькими родительскими – так вам будет сложно принимать решения. Лучше выделить одну значимую связь, а остальные обозначить пунктиром.
✔️Помним про характеристики хорошей метрики. Она всегда сравнима, понятна, измеряема, управляема и мотивирует улучшить себя.
Теперь опробуем фреймворк в действии. Откройте бэклог и соотнесите ваши идеи с метриками в иерархии. Для наглядности пишите идеи в комментариях к названию метрики, на которую повлияет новый функционал. Чем ближе к вершине лежит метрика, тем больше вероятность того, что фича выстрелит. Всегда фокусируемся на метриках, а не фичах.
#метрики
Древо или иерархия метрик – это фреймворк для иерархии и классификации метрик, которые выстраиваются от ключевой метрики продукта (NSM).
Цель фреймворка:
🔹держать фокус на значимых метриках;
🔹определить слабые места;
🔹внедрять фичи, развивающие продукт в желаемом направлении.
Алгоритм построения:
1️⃣ Начинаем «с головы», то есть с нахождения NSM. Я рассказал один из способов выше, а также поделился полезной книгой.
2️⃣ Далее определяем 3-5 входных метрик или KPI, которые напрямую влияют на NSM: если KPI растут, то растет и NSM. Они образуют I уровень иерархии. Если вы нашли свою NSM, то скорей всего уже знаете KPI продукта.
3️⃣ Чтобы подобрать «дочерние» метрики II уровня, к каждому KPI задаем вопрос: Какие показатели влияют на значение метрики?
4️⃣ Этот же вопрос мы задаем к метрикам на уровне II и определяем метрики уровня III. В зависимости от сложности продукта продолжайте раскопки до уровня IV-V.
В итоге мы получаем перевернутое дерево, в котором вышележащие метрики ветвятся на определяющие их дочерние. Древо строится согласно концепции MindMap: каждая мысль на карте порождает новые идеи, логически вытекающие из нее.
Советы:
✔️Хорошее древо – это то, где вышележащая метрика зависит только от своих дочерних метрик. Важно учесть все дочерние показатели.
✔️Не стоит напрямую связывать дочерние метрики с несколькими родительскими – так вам будет сложно принимать решения. Лучше выделить одну значимую связь, а остальные обозначить пунктиром.
✔️Помним про характеристики хорошей метрики. Она всегда сравнима, понятна, измеряема, управляема и мотивирует улучшить себя.
Теперь опробуем фреймворк в действии. Откройте бэклог и соотнесите ваши идеи с метриками в иерархии. Для наглядности пишите идеи в комментариях к названию метрики, на которую повлияет новый функционал. Чем ближе к вершине лежит метрика, тем больше вероятность того, что фича выстрелит. Всегда фокусируемся на метриках, а не фичах.
#метрики
👍17🔥4
Блинов поели🥞, пора приступать к работе.
При визуализации данных мы должны помнить о ее главной цели – донести знание до аудитории. Это заставляет нас залезать в шкуру пользователя дашборда и задумываться о том, как он воспринимает графики. Восприятию могут помешать перегруз графиков ненужными деталями, неправильные акценты или их отсутствие, а также изображение голых данных без контекста. В блоге Towards Data Science на Medium (VPN) Мария Мансурова, Data&Product Analytics Lead, рассказала, как разглядеть дьявола в деталях и помочь аудитории увидеть главное.
На Хабре я нашел большой, крутой туториал, посвященный кластеризации в ML. Приключение на 34 минуты. Автор рассказывает все, о чем вы боялисьузнать спросить. Статья разбирает принцип работы популярных алгоритмов кластеризации от простых к более продвинутым: K-Means, методы агломеративной и спектральной кластеризаций, DBSCAN и Affinity Propagation. Автор показывает их упрощённые реализации с нуля на Python и дает дополнительные источники в конце каждого раздела, чтобы вы могли забрести в самые дебри.
Aha moment – это тот момент, когда пользователь понимает, как продукт решает его проблему или удовлетворяет потребность. Это набор действий, после которых человек осознает ценность продукта. Он начинает пользоваться продуктом чаще, становясь лояльным клиентом. Мало кто задумывается об Aha moment при развитии продукта. И зря. Когда продакт знает Aha moment продукта и использует его, он влияет на метрики Activation и Retention. Автор блога на Medium (VPN) в деталях разбирает суть Aha moment и предлагает гайд, как определить его за 3 шага:
1️⃣ Разговор с пользователями (постоянными и ушедшими);
2️⃣ Сбор данных и поиск паттернов;
3️⃣ Выявление и тестирование возможного поведения.
#дайджест
При визуализации данных мы должны помнить о ее главной цели – донести знание до аудитории. Это заставляет нас залезать в шкуру пользователя дашборда и задумываться о том, как он воспринимает графики. Восприятию могут помешать перегруз графиков ненужными деталями, неправильные акценты или их отсутствие, а также изображение голых данных без контекста. В блоге Towards Data Science на Medium (VPN) Мария Мансурова, Data&Product Analytics Lead, рассказала, как разглядеть дьявола в деталях и помочь аудитории увидеть главное.
На Хабре я нашел большой, крутой туториал, посвященный кластеризации в ML. Приключение на 34 минуты. Автор рассказывает все, о чем вы боялись
Aha moment – это тот момент, когда пользователь понимает, как продукт решает его проблему или удовлетворяет потребность. Это набор действий, после которых человек осознает ценность продукта. Он начинает пользоваться продуктом чаще, становясь лояльным клиентом. Мало кто задумывается об Aha moment при развитии продукта. И зря. Когда продакт знает Aha moment продукта и использует его, он влияет на метрики Activation и Retention. Автор блога на Medium (VPN) в деталях разбирает суть Aha moment и предлагает гайд, как определить его за 3 шага:
1️⃣ Разговор с пользователями (постоянными и ушедшими);
2️⃣ Сбор данных и поиск паттернов;
3️⃣ Выявление и тестирование возможного поведения.
#дайджест
👍14❤1
Хочу поделиться с вами впечатлениями от посещения домашнего митапа по продуктовой аналитике, который не так давно прошел в новом офисе Tinkoff.
Сейчас, когда крупные конференции по аналитике на паузе, такие мероприятия – прекрасная возможность познакомиться с комьюнити, обменяться идеями и получить ценные знания.
На митапе ребята из Авито.Работа, рассказали как команда аналитиков использует аналитику для оценки актуальности объявлений, что напрямую влияет на выручку компании.
Также было интересно узнать, как ЦИАН применяет непересекающиеся эксперименты и псевдо-тесты для оценки событийных метрик.
Но особенное впечатление оставил рассказ о решении от Tinkoff, которое помогает аналитикам экономить время, а самой компании оставаться data-driven (всегда было интересно посмотреть, какие решения они применяют, особенно в условиях санкций).
Делюсь ссылкой на видео и презентации. Надеюсь, они окажутся для вас такими же полезными, как и для меня.
Сейчас, когда крупные конференции по аналитике на паузе, такие мероприятия – прекрасная возможность познакомиться с комьюнити, обменяться идеями и получить ценные знания.
На митапе ребята из Авито.Работа, рассказали как команда аналитиков использует аналитику для оценки актуальности объявлений, что напрямую влияет на выручку компании.
Также было интересно узнать, как ЦИАН применяет непересекающиеся эксперименты и псевдо-тесты для оценки событийных метрик.
Но особенное впечатление оставил рассказ о решении от Tinkoff, которое помогает аналитикам экономить время, а самой компании оставаться data-driven (всегда было интересно посмотреть, какие решения они применяют, особенно в условиях санкций).
Делюсь ссылкой на видео и презентации. Надеюсь, они окажутся для вас такими же полезными, как и для меня.
👍10❤4
Дополню пост о древе метрик книгой, которая научит вас находить KPI и строить иерархии.
📚 KPI Checklists: Develop Meaningful, Trusted KPIs and Reports Using Step-by-step Checklists
Автор: Bernie Smith
Берни Смит, владелец компании Made to Measure KPIs, изобрел метод KPI-деревьев в 2007 году. Автор ничего не говорит о NSM, зато учит правильно определять стратегическую миссию продукта. Именно она лежит на вершине иерархии. Это перекликается с фреймворком Полярной звезды: в нем мы формулировали цель продукта в виде емкой фразы, а затем искали метрику, которая измеряет движение к цели.
Книга наполнена краткими объяснениями и чек-листами. Главы расскажут, как сформулировать миссию продукта, понять его KPI и определяющие их метрики, как подготовить отчет и дэшборд, а также справиться со сложностями на каждом этапе.
Если хочется быстро понять суть метода, то вот краткий гайд по построению KPI-дерева на сайте Made to Measure KPIs.
🔗Купить книгу на английском можно на Амазоне. На русский язык книга не переводилась.
#книга
📚 KPI Checklists: Develop Meaningful, Trusted KPIs and Reports Using Step-by-step Checklists
Автор: Bernie Smith
Берни Смит, владелец компании Made to Measure KPIs, изобрел метод KPI-деревьев в 2007 году. Автор ничего не говорит о NSM, зато учит правильно определять стратегическую миссию продукта. Именно она лежит на вершине иерархии. Это перекликается с фреймворком Полярной звезды: в нем мы формулировали цель продукта в виде емкой фразы, а затем искали метрику, которая измеряет движение к цели.
Книга наполнена краткими объяснениями и чек-листами. Главы расскажут, как сформулировать миссию продукта, понять его KPI и определяющие их метрики, как подготовить отчет и дэшборд, а также справиться со сложностями на каждом этапе.
Если хочется быстро понять суть метода, то вот краткий гайд по построению KPI-дерева на сайте Made to Measure KPIs.
🔗Купить книгу на английском можно на Амазоне. На русский язык книга не переводилась.
#книга
🔥9
До сих пор пребываю в шоке после ужасного теракта. Сначала не хотел делать дайджест, но делать надо, ведь именно страха и апатии от нас и добиваются. В эти выходные общество показало небывалый пример единения, мы стали сильнее.
Вечная память погибшим🙏
——
Yandex Cloud расширяет возможности работы с данными. Во-первых, провайдер запустил Yandex MetaData Hub. Он объединяет функции управления метаданными для интеграции баз данных и подключения к ним. Во-вторых, в Yandex DataLens появятся два тарифа: Community для небольших проектов и некоммерческого использования и Business для корпоративного внедрения и бизнес задач. В-третьих, команда повысила общий уровень безопасности управляемых баз данных. Теперь пользователи смогут более детализировано отслеживать аудитные логи в Audit Trails.
Все обсуждают статью Сергея Тихомирова, ex Head of Product Яндекс Практикум, о сути экосистемы продуктов. Сергей объяснил, что лежит в основе нее и почему супераппы или платформы – еще не экосистема. Чтобы назвать набор продуктов экосистемой, должны быть соблюдены условия:
1. Продукты объединены платформой единого профиля пользователя;
2. Между продуктами существует передаточная ценность – эффект увеличения ценности от одного продукта экосистемы за счет передачи в него информации из другого (например, авторизационных данных VK ID).
Благодаря статье понимаешь, почему в современных реалиях разработка экосистемы на российском рынке – ключевая стратегия развития компаний.
Сегодня бизнес ищет способы максимизировать работу data команды и измерить рентабельность инвестиций в нее. Автор блога Towards Data Science на Medium (VPN) предложила полезный фреймворк – Пирамида окупаемости инвестиций в данные (Data ROI Pyramid). В основе расчета Data ROI лежат 3 показателя: инвестиции в данные, ценность дата продукта и время простоя данных. В статье даны формулы для расчета каждого из них. Фреймворк актуален руководителям команд аналитиков для отчетов CEO. Редко можно встретить алгоритм расчета Data ROI, а тут целый фреймворк.
#дайджест
Вечная память погибшим🙏
——
Yandex Cloud расширяет возможности работы с данными. Во-первых, провайдер запустил Yandex MetaData Hub. Он объединяет функции управления метаданными для интеграции баз данных и подключения к ним. Во-вторых, в Yandex DataLens появятся два тарифа: Community для небольших проектов и некоммерческого использования и Business для корпоративного внедрения и бизнес задач. В-третьих, команда повысила общий уровень безопасности управляемых баз данных. Теперь пользователи смогут более детализировано отслеживать аудитные логи в Audit Trails.
Все обсуждают статью Сергея Тихомирова, ex Head of Product Яндекс Практикум, о сути экосистемы продуктов. Сергей объяснил, что лежит в основе нее и почему супераппы или платформы – еще не экосистема. Чтобы назвать набор продуктов экосистемой, должны быть соблюдены условия:
1. Продукты объединены платформой единого профиля пользователя;
2. Между продуктами существует передаточная ценность – эффект увеличения ценности от одного продукта экосистемы за счет передачи в него информации из другого (например, авторизационных данных VK ID).
Благодаря статье понимаешь, почему в современных реалиях разработка экосистемы на российском рынке – ключевая стратегия развития компаний.
Сегодня бизнес ищет способы максимизировать работу data команды и измерить рентабельность инвестиций в нее. Автор блога Towards Data Science на Medium (VPN) предложила полезный фреймворк – Пирамида окупаемости инвестиций в данные (Data ROI Pyramid). В основе расчета Data ROI лежат 3 показателя: инвестиции в данные, ценность дата продукта и время простоя данных. В статье даны формулы для расчета каждого из них. Фреймворк актуален руководителям команд аналитиков для отчетов CEO. Редко можно встретить алгоритм расчета Data ROI, а тут целый фреймворк.
#дайджест
❤21👍6
Каждый мой пост на тему метрик – это ответ на самые частые вопросы продактов:
❓Откуда брать метрики и KPI;
❓Как связать метрики;
❓Как приоритезировать бэклог.
Еще один ответ в копилку – пирамида метрик. Это фреймворк для иерархии и классификации метрик на уровне бизнес-логики. С помощью него СЕО и продакт могут понять, почему буксует продукт, а стартапер – соблазнить инвестора показателями.
Не существует универсальной пирамиды, так как каждая компания конструирует ее под свои цели. Здесь я приведу вариант Елены Серегиной, главного популяризатора и автора пирамиды метрик в России.
Если посмотреть на бизнес также, как психолог Абрахам Маслоу посмотрел на потребности человека, то мы увидим пирамиду целей. Лена выделяет 4 слоя в пирамиде. Каждый слой содержит метрики, количественно характеризующие данный уровень.
Пирамида метрик повторяет пирамиду Маслоу: главное наверху, а рычаги давления внизу. Достичь вершины можно только после проработки нижних слоев. Несмотря на это, объяснить структуру пирамиды проще сверху вниз.
На вершине лежит слой бизнес-целей, от которых зависит стратегия построения всей пирамиды. В нем мы располагаем метрики Revenue, Profit и Market Share. Его подстилает слой маржинальности продукта. Там обитают LTV, ARPU и OPEX.
Средний слой посвящен продукту, а именно как он решает проблему пользователя и как клиент взаимодействует с ним. Оценить продукт можно со стороны лояльности пользователей, его ценности и качества. Причем качество в пирамиде лежит ниже лояльности и ценности, а значит приоритетнее.
Метрики лояльности достаточно универсальны: NPS, Retention, Churn rate, и др. Метрики ценности и качества определить сложнее, так как они полностью зависят от продукта. Есть правило: чем ниже спускаемся по пирамиде, тем меньше универсальных метрик и больше кастомных.
В основании пирамиды лежит слой интерфейса продукта и маркетинга. В нем мы располагаем все аудиторные, временные и маркетинговые метрики, например, CTR и средняя продолжительность сессии.
#метрики
❓Откуда брать метрики и KPI;
❓Как связать метрики;
❓Как приоритезировать бэклог.
Еще один ответ в копилку – пирамида метрик. Это фреймворк для иерархии и классификации метрик на уровне бизнес-логики. С помощью него СЕО и продакт могут понять, почему буксует продукт, а стартапер – соблазнить инвестора показателями.
Не существует универсальной пирамиды, так как каждая компания конструирует ее под свои цели. Здесь я приведу вариант Елены Серегиной, главного популяризатора и автора пирамиды метрик в России.
Если посмотреть на бизнес также, как психолог Абрахам Маслоу посмотрел на потребности человека, то мы увидим пирамиду целей. Лена выделяет 4 слоя в пирамиде. Каждый слой содержит метрики, количественно характеризующие данный уровень.
Пирамида метрик повторяет пирамиду Маслоу: главное наверху, а рычаги давления внизу. Достичь вершины можно только после проработки нижних слоев. Несмотря на это, объяснить структуру пирамиды проще сверху вниз.
На вершине лежит слой бизнес-целей, от которых зависит стратегия построения всей пирамиды. В нем мы располагаем метрики Revenue, Profit и Market Share. Его подстилает слой маржинальности продукта. Там обитают LTV, ARPU и OPEX.
Средний слой посвящен продукту, а именно как он решает проблему пользователя и как клиент взаимодействует с ним. Оценить продукт можно со стороны лояльности пользователей, его ценности и качества. Причем качество в пирамиде лежит ниже лояльности и ценности, а значит приоритетнее.
Метрики лояльности достаточно универсальны: NPS, Retention, Churn rate, и др. Метрики ценности и качества определить сложнее, так как они полностью зависят от продукта. Есть правило: чем ниже спускаемся по пирамиде, тем меньше универсальных метрик и больше кастомных.
В основании пирамиды лежит слой интерфейса продукта и маркетинга. В нем мы располагаем все аудиторные, временные и маркетинговые метрики, например, CTR и средняя продолжительность сессии.
#метрики
👍18❤6🔥3
По традиции понедельников – подборка классных статей.
Несмотря на то, что многие специалисты (включая меня) делятся опытом и знаниями, начинающим аналитикам этого мало. Нужна дорожная карта, чтобы из информационного компота человек сформировал систему предмета в голове. Чтобы помочь юным падаванам, опытный продуктовый аналитик предложил отличный роадмап по профессии. Автор прописал каждый шаг обучения: от освоения технической базы до постижения аналитической культуры. Мой совет: не распыляйтесь. Если вы выберите этот роадмап, то следуйте ему до конца.
Специалисты по контекстной рекламе из Ingate попросили ChatGPT сегментировать аудиторию по методу 5W. В основу модели заложены 5 вопросов, ответы на которые дают понимание целей и интересов аудитории: What, Who, Why, When, Where. Затем ребята выделили микросегменты и подобрали персонализированные креативы под каждое ядро ЦА и так смогли снизить CPL в несколько раз. Этот кейс пример того, как часть задач аналитиков переходит в руки нейросетей. Авторы статьи поделились готовым алгоритмом запросов к чату и показали оформление каждого шага. Главное – проверять данные, собранные нейросетью.
Автор блога на Medium (VPN) поделился гайдом для подсчета продуктовых и UX метрик. Он выделил список обязательных метрик и объяснил, как их находить. А также рассказал, чем отличаются UX метрики от чисто продуктовых. Главная задача таких метрик – выявлять недостатки в удобстве использования продукта и помогать расставлять приоритеты в проектных инициативах в тех областях, где больше всего возможностей для улучшения. Наконец, эти показатели говорят вам, насколько успешен продукт.
#дайджест
Несмотря на то, что многие специалисты (включая меня) делятся опытом и знаниями, начинающим аналитикам этого мало. Нужна дорожная карта, чтобы из информационного компота человек сформировал систему предмета в голове. Чтобы помочь юным падаванам, опытный продуктовый аналитик предложил отличный роадмап по профессии. Автор прописал каждый шаг обучения: от освоения технической базы до постижения аналитической культуры. Мой совет: не распыляйтесь. Если вы выберите этот роадмап, то следуйте ему до конца.
Специалисты по контекстной рекламе из Ingate попросили ChatGPT сегментировать аудиторию по методу 5W. В основу модели заложены 5 вопросов, ответы на которые дают понимание целей и интересов аудитории: What, Who, Why, When, Where. Затем ребята выделили микросегменты и подобрали персонализированные креативы под каждое ядро ЦА и так смогли снизить CPL в несколько раз. Этот кейс пример того, как часть задач аналитиков переходит в руки нейросетей. Авторы статьи поделились готовым алгоритмом запросов к чату и показали оформление каждого шага. Главное – проверять данные, собранные нейросетью.
Автор блога на Medium (VPN) поделился гайдом для подсчета продуктовых и UX метрик. Он выделил список обязательных метрик и объяснил, как их находить. А также рассказал, чем отличаются UX метрики от чисто продуктовых. Главная задача таких метрик – выявлять недостатки в удобстве использования продукта и помогать расставлять приоритеты в проектных инициативах в тех областях, где больше всего возможностей для улучшения. Наконец, эти показатели говорят вам, насколько успешен продукт.
#дайджест
❤13
Чем живут продуктовые и дата-аналитики
Ребята из NEWHR Data наконец-то опубликовали результаты масштабного исследования рынка русскоязычных продуктовых и дата-аналитиков. Респонденты (в основном опытные аналитики грейдов middle и выше) ответили на десятки вопросов.
В числе прочего:
🔹 Как изменились их зарплаты за прошлый год;
🔹 В каких компаниях хотят и не очень хотят работать;
🔹 Что поменялось в приоритетах кандидатов и их взглядах на рынок за последние три года;
🔹 Что ценят в работодателях и считают «хорошей аналитической культурой»;
🔹 Чем занимаются в своей повседневной работе;
🔹 В каких странах живут и хотели бы жить.
Есть любопытные инсайты. Всегда интересно посмотреть, чем живут твои коллеги 🤓
Ребята из NEWHR Data наконец-то опубликовали результаты масштабного исследования рынка русскоязычных продуктовых и дата-аналитиков. Респонденты (в основном опытные аналитики грейдов middle и выше) ответили на десятки вопросов.
В числе прочего:
🔹 Как изменились их зарплаты за прошлый год;
🔹 В каких компаниях хотят и не очень хотят работать;
🔹 Что поменялось в приоритетах кандидатов и их взглядах на рынок за последние три года;
🔹 Что ценят в работодателях и считают «хорошей аналитической культурой»;
🔹 Чем занимаются в своей повседневной работе;
🔹 В каких странах живут и хотели бы жить.
Есть любопытные инсайты. Всегда интересно посмотреть, чем живут твои коллеги 🤓
👍20🔥5❤1🦄1
Понедельник. Утро. Дайджест – в ленте.
Время бизнеса с жесткой иерархией прошло. Сегодня выживают только гибкие компании с адаптивной системой управления. Agile-подход изменил и финансовую организацию бизнеса. Теперь руководители продуктовых и функциональных команд должны сами планировать свои финансовые показатели и нести ответственность за доходы, расходы, прибыль/убыток и инвестиции. Денис Дубовцев, автор книги «Профессия финансист» рассказал, как экологично поделить ответственность за финансовые показатели продукта внутри компании. Например, нужно автоматизировать систему создания финансовых отчетов, обсуждать цифры после каждого закрытого месяца и на основе их корректировать запланированные показатели.
Бизнес-секреты рассказали, что такое проект и как им управлять. Причем не важно, мы говорим о разработке продукта или освоении новой профессии. Проект – это набор шагов на пути к достижению результата (например, готового продукта или приема на работу). Статья, в первую очередь, будет полезна начинающим руководителям. Она рассказывает про 5 процессов управления проектом – инициация, планирование, реализация, мониторинг и контроль, завершение. В статье также разбираются популярные методы управления: Waterfall, Scrum и Kanban. Автор дает советы, когда важно делегировать задачу и как перераспределять ресурсы. В конце – список полезных книг и статей.
Разведочный анализ данных (EDA) – это подход к анализу наборов данных с целью обобщить их основные характеристики. Процесс энергозатратный, но крайне полезный. Он позволяет максимально вникнуть в данные, выбрать ключевые переменные, обнаружить отклонения и аномалии. Важный инструмент метода – визуализация данных. Можно ли пропустить EDA и перейти сразу к выводам? Почти всегда нет. Автор на Хабре пояснила несколько статистических феноменов (например, квартет Энскомба и парадокс Симпсона), при которых полный анализ всех переменных – единственный способ избежать ложных выводов.
#дайджест
Время бизнеса с жесткой иерархией прошло. Сегодня выживают только гибкие компании с адаптивной системой управления. Agile-подход изменил и финансовую организацию бизнеса. Теперь руководители продуктовых и функциональных команд должны сами планировать свои финансовые показатели и нести ответственность за доходы, расходы, прибыль/убыток и инвестиции. Денис Дубовцев, автор книги «Профессия финансист» рассказал, как экологично поделить ответственность за финансовые показатели продукта внутри компании. Например, нужно автоматизировать систему создания финансовых отчетов, обсуждать цифры после каждого закрытого месяца и на основе их корректировать запланированные показатели.
Бизнес-секреты рассказали, что такое проект и как им управлять. Причем не важно, мы говорим о разработке продукта или освоении новой профессии. Проект – это набор шагов на пути к достижению результата (например, готового продукта или приема на работу). Статья, в первую очередь, будет полезна начинающим руководителям. Она рассказывает про 5 процессов управления проектом – инициация, планирование, реализация, мониторинг и контроль, завершение. В статье также разбираются популярные методы управления: Waterfall, Scrum и Kanban. Автор дает советы, когда важно делегировать задачу и как перераспределять ресурсы. В конце – список полезных книг и статей.
Разведочный анализ данных (EDA) – это подход к анализу наборов данных с целью обобщить их основные характеристики. Процесс энергозатратный, но крайне полезный. Он позволяет максимально вникнуть в данные, выбрать ключевые переменные, обнаружить отклонения и аномалии. Важный инструмент метода – визуализация данных. Можно ли пропустить EDA и перейти сразу к выводам? Почти всегда нет. Автор на Хабре пояснила несколько статистических феноменов (например, квартет Энскомба и парадокс Симпсона), при которых полный анализ всех переменных – единственный способ избежать ложных выводов.
#дайджест
👍11🔥2
Милый котенок-аналитик в очках, а вокруг дашборды с графиками.
Именно такой промпт я использовал чтобы сгенерировать эту картинку в YandexART. Получилось прикольно, ведь примерно так мы и выглядим 😃
Yandex AI Rendering Technology (YandexART) — диффузионная нейросеть, которая создаёт изображения в ответ на текстовые запросы. Она обучалась на примере 330 миллионов картинок с описанием, знает российский культурный код и использует особый алгоритм распознавания текстов, чтобы точнее понимать пожелания пользователей.
Модель формирует изображения методом каскадной диффузии: сначала генерирует картинки и кадры в соответствии с запросом пользователя, а затем поэтапно увеличивает их разрешение, насыщая деталями. Это позволяет создавать более реалистичную и детализированную графику. Подробнее о качестве и особенностях обучения YandexART можно прочитать на Хабре.
👍15❤6👎1
Сегодня разберем построение пирамиды метрик. Оно занимает 6 шагов. Первые четыре лучше прорабатывать всей командой в Miro, созвав представителей бизнеса, маркетинг, владельца продукта, аналитиков, тех лидов и др. Последние шаги предоставьте аналитикам.
1️⃣ Постановка бизнес-цели. Возможно, вас интересует привлечение инвестиций или монетизация. Постарайтесь правильно определить цель. Она – залог хорошо подобранных метрик.
2️⃣ Брейншторм метрик. Мы перечисляем уже имеющиеся метрики и задаем себе вопрос: что еще мы хотим отслеживать? Отмечайте на доске, какие метрики вы уже отслеживаете, а какие нет. Так мы закладываем скоуп будущих работ.
3️⃣ Классификация. Теперь мы раскладываем метрики по пирамиде и определяем их иерархию. Для этого внутри каждого слоя мы выбираем NSM и декомпозируем ее.
Классификация показывает гиперфокус и слепые пятна. Гиперфокус – это переизбыток похожих по смыслу метрик в одном из слоев. Чтобы избавиться от него, мы выбираем один наиболее подходящий показатель и отбрасываем другие.
Слепое пятно – это слой пирамиды, на котором почти нет метрик. Часто оно выпадает на продуктовые слои качества и ценности. В этом случае команде нужно заняться поиском «боли» пользователя, которую снимает продукт, и после подобрать метрики к найденному решению.
4️⃣ Ревью. Мы проходимся по метрикам в пирамиде и задаем проверочные вопросы по типу является ли метрика хорошей или на что она влияет. Метрики, провалившие опрос, покидают доску.
5️⃣ Анализ метрик. Аналитики изучают распределение каждой метрики по пользователям, ее ретроспективную динамику и связь с другими метриками. Анализ подсвечивает, как на самом деле пользователь взаимодействует с продуктом. Зная это, вам будет проще объяснить аномалии на графиках.
6️⃣ Документирование и внедрение. Пирамиду важно задокументировать, а каждую метрику представить в виде SQL-кода. Аналитики должны договориться, как именно будут считать каждую метрику. Последним наступает черед визуализации: аналитики обновляют старые и создают новые дашборды.
#метрики
1️⃣ Постановка бизнес-цели. Возможно, вас интересует привлечение инвестиций или монетизация. Постарайтесь правильно определить цель. Она – залог хорошо подобранных метрик.
2️⃣ Брейншторм метрик. Мы перечисляем уже имеющиеся метрики и задаем себе вопрос: что еще мы хотим отслеживать? Отмечайте на доске, какие метрики вы уже отслеживаете, а какие нет. Так мы закладываем скоуп будущих работ.
3️⃣ Классификация. Теперь мы раскладываем метрики по пирамиде и определяем их иерархию. Для этого внутри каждого слоя мы выбираем NSM и декомпозируем ее.
Классификация показывает гиперфокус и слепые пятна. Гиперфокус – это переизбыток похожих по смыслу метрик в одном из слоев. Чтобы избавиться от него, мы выбираем один наиболее подходящий показатель и отбрасываем другие.
Слепое пятно – это слой пирамиды, на котором почти нет метрик. Часто оно выпадает на продуктовые слои качества и ценности. В этом случае команде нужно заняться поиском «боли» пользователя, которую снимает продукт, и после подобрать метрики к найденному решению.
4️⃣ Ревью. Мы проходимся по метрикам в пирамиде и задаем проверочные вопросы по типу является ли метрика хорошей или на что она влияет. Метрики, провалившие опрос, покидают доску.
5️⃣ Анализ метрик. Аналитики изучают распределение каждой метрики по пользователям, ее ретроспективную динамику и связь с другими метриками. Анализ подсвечивает, как на самом деле пользователь взаимодействует с продуктом. Зная это, вам будет проще объяснить аномалии на графиках.
6️⃣ Документирование и внедрение. Пирамиду важно задокументировать, а каждую метрику представить в виде SQL-кода. Аналитики должны договориться, как именно будут считать каждую метрику. Последним наступает черед визуализации: аналитики обновляют старые и создают новые дашборды.
#метрики
❤11👍6