Artificial Intelligence & ChatGPT Prompts – Telegram
Artificial Intelligence & ChatGPT Prompts
41.5K subscribers
673 photos
5 videos
319 files
567 links
🔓Unlock Your Coding Potential with ChatGPT
🚀 Your Ultimate Guide to Ace Coding Interviews!
💻 Coding tips, practice questions, and expert advice to land your dream tech job.


For Promotions: @love_data
Download Telegram
𝗖𝗜𝗦𝗖𝗢 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍

- Data Analytics
- Data Science 
- Python
- Javanoscript
- Cybersecurity
 
𝐋𝐢𝐧𝐤 👇:- 

https://pdlink.in/4fYr1xO

Enroll For FREE & Get Certified🎓
Real-world Data Science projects ideas: 💡📈

1. Credit Card Fraud Detection

📍 Tools: Python (Pandas, Scikit-learn)

Use a real credit card transactions dataset to detect fraudulent activity using classification models.

Skills you build: Data preprocessing, class imbalance handling, logistic regression, confusion matrix, model evaluation.

2. Predictive Housing Price Model

📍 Tools: Python (Scikit-learn, XGBoost)

Build a regression model to predict house prices based on various features like size, location, and amenities.

Skills you build: Feature engineering, EDA, regression algorithms, RMSE evaluation.


3. Sentiment Analysis on Tweets or Reviews

📍 Tools: Python (NLTK / TextBlob / Hugging Face)

Analyze customer reviews or Twitter data to classify sentiment as positive, negative, or neutral.

Skills you build: Text preprocessing, NLP basics, vectorization (TF-IDF), classification.


4. Stock Price Prediction

📍 Tools: Python (LSTM / Prophet / ARIMA)

Use time series models to predict future stock prices based on historical data.

Skills you build: Time series forecasting, data visualization, recurrent neural networks, trend/seasonality analysis.


5. Image Classification with CNN

📍 Tools: Python (TensorFlow / PyTorch)

Train a Convolutional Neural Network to classify images (e.g., cats vs dogs, handwritten digits).

Skills you build: Deep learning, image preprocessing, CNN layers, model tuning.


6. Customer Segmentation with Clustering

📍 Tools: Python (K-Means, PCA)

Use unsupervised learning to group customers based on purchasing behavior.

Skills you build: Clustering, dimensionality reduction, data visualization, customer profiling.


7. Recommendation System

📍 Tools: Python (Surprise / Scikit-learn / Pandas)

Build a recommender system (e.g., movies, products) using collaborative or content-based filtering.

Skills you build: Similarity metrics, matrix factorization, cold start problem, evaluation (RMSE, MAE).


👉 Pick 2–3 projects aligned with your interests.
👉 Document everything on GitHub, and post about your learnings on LinkedIn.

Here you can find the project datasets: https://whatsapp.com/channel/0029VbAbnvPLSmbeFYNdNA29

React ❤️ for more
4
𝗔𝗜 & 𝗠𝗟 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍

🎓 Take advantage of free certifications and boost your career in tech!

Experiential Learning for building industry-ready skills
Gain industry-recognized certification
Get government incentives post-completion

Develop job-ready skills across diverse industries

𝐋𝐢𝐧𝐤 👇:- 
 
https://pdlink.in/4nwV054
 
Enroll for FREE & Get Certified 🎓
1
Tips for Google Interview Preparation
Now that we know all about the hiring process of Google, here are a few tips which you can use to crack Google’s interview and get a job.

Understand the work culture at Google well - It is always good to understand how the company works and what are the things that are expected out of an employee at Google. This shows that you are really interested in working at Google and leaves a good impression on the interviewer as well.
Be Thorough with Data Structures and Algorithms - At Google, there is always an appreciation for good problem solvers. If you want to have a good impression on the interviewers, the best way is to prove that you have worked a lot on developing your logic structures and solving algorithmic problems. A good understanding of Data Structures and Algorithms and having one or two good projects always earn you brownie points with Amazon.
Use the STAR method to format your Response - STAR is an acronym for Situation, Task, Action, and Result. The STAR method is a structured way to respond to behavioral based interview questions. To answer a provided question using the STAR method, you start by describing the situation that was at hand, the Task which needed to be done, the action taken by you as a response to the Task, and finally the Result of the experience. It is important to think about all the details and recall everyone and everything that was involved in the situation. Let the interviewer know how much of an impact that experience had on your life and in the lives of all others who were involved. It is always a good practice to be prepared with a real-life story that you can describe using the STAR method.
Know and Describe your Strengths - Many people who interview at various companies, stay shy during the interviews and feel uncomfortable when they are asked to describe their strengths. Remember that if you do not show how good you are at the skills you know, no one will ever be able to know about the same and this might just cost you a lot. So it is okay to think about yourself and highlight your strengths properly and honestly as and when required.
Discuss with your interviewer and keep the conversation going - Remember that an interview is not a written exam and therefore even if you come up with the best of solutions for the given problems, it is not worth anything until and unless the interviewer understands what you are trying to say. Therefore, it is important to make the interviewer that he or she is also a part of the interview. Also, asking questions might always prove to be helpful during the interview.
1
𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗙𝗥𝗘𝗘 𝗥𝗼𝗮𝗱𝗺𝗮𝗽 ,𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 ,𝗣𝗿𝗼𝗷𝗲𝗰𝘁𝘀 & 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄 𝗚𝘂𝗶𝗱𝗲😍

Roadmap:- https://pdlink.in/41c1Kei

Certifications:- https://pdlink.in/3Fq7E4p

Projects:- https://pdlink.in/3ZkXetO

Interview Q/A :- https://pdlink.in/4jLOJ2a

Enroll For FREE & Become a Certified Data Analyst In 2025🎓
1
SQL Interview Questions

1. How would you find duplicate records in SQL?
2.What are various types of SQL joins?
3.What is a trigger in SQL?
4.What are different DDL,DML commands in SQL?
5.What is difference between Delete, Drop and Truncate?
6.What is difference between Union and Union all?
7.Which command give Unique values?
8. What is the difference between Where and Having Clause?
9.Give the execution of keywords in SQL?
10. What is difference between IN and BETWEEN Operator?
11. What is primary and Foreign key?
12. What is an aggregate Functions?
13. What is the difference between Rank and Dense Rank?
14. List the ACID Properties and explain what they are?
15. What is the difference between % and _ in like operator?
16. What does CTE stands for?
17. What is database?what is DBMS?What is RDMS?
18.What is Alias in SQL?
19. What is Normalisation?Describe various form?
20. How do you sort the results of a query?
21. Explain the types of Window functions?
22. What is limit and offset?
23. What is candidate key?
24. Describe various types of Alter command?
25. What is Cartesian product?

Like this post if you need more content like this ❤️
4
𝗜𝗻𝗱𝘂𝘀𝘁𝗿𝘆 𝗔𝗽𝗽𝗿𝗼𝘃𝗲𝗱 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 😍

Whether you’re interested in AI, Data Analytics, Cybersecurity, or Cloud Computing, there’s something here for everyone.

100% Free Courses
Govt. Incentives on Completion
Self-paced Learning
Certificates to Showcase on LinkedIn & Resume
Mock Assessments to Test Your Skills

𝐋𝐢𝐧𝐤 👇:- 

https://pdlink.in/447coEk

Enroll for FREE & Get Certified 🎓
1
Machine Learning isn't easy!

It’s the field that powers intelligent systems and predictive models.

To truly master Machine Learning, focus on these key areas:

0. Understanding the Basics of Algorithms: Learn about linear regression, decision trees, and k-nearest neighbors to build a solid foundation.


1. Mastering Data Preprocessing: Clean, normalize, and handle missing data to prepare your datasets for training.


2. Learning Supervised Learning Techniques: Dive deep into classification and regression models, such as SVMs, random forests, and logistic regression.


3. Exploring Unsupervised Learning: Understand clustering techniques (K-means, hierarchical) and dimensionality reduction (PCA, t-SNE).


4. Mastering Model Evaluation: Use techniques like cross-validation, confusion matrices, ROC curves, and F1 scores to assess model performance.


5. Understanding Overfitting and Underfitting: Learn how to balance bias and variance to build robust models.


6. Optimizing Hyperparameters: Use grid search, random search, and Bayesian optimization to fine-tune your models for better performance.


7. Diving into Neural Networks and Deep Learning: Explore deep learning with frameworks like TensorFlow and PyTorch to create advanced models like CNNs and RNNs.


8. Working with Natural Language Processing (NLP): Master text data, sentiment analysis, and techniques like word embeddings and transformers.


9. Staying Updated with New Techniques: Machine learning evolves rapidly—keep up with emerging models, techniques, and research.



Machine learning is about learning from data and improving models over time.

💡 Embrace the challenges of building algorithms, experimenting with data, and solving complex problems.

With time, practice, and persistence, you’ll develop the expertise to create systems that learn, predict, and adapt.

Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://news.1rj.ru/str/datasciencefun

Like if you need similar content 😄👍

Hope this helps you 😊

#datascience
2
𝗧𝗼𝗽 𝗖𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀 & 𝗟𝗲𝗮𝗱𝗶𝗻𝗴 𝗖𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀 𝗢𝗳𝗳𝗲𝗿𝗶𝗻𝗴 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 😍

Harward :- https://pdlink.in/4kmYOn1

MIT :- https://pdlink.in/45cvR95

HP :- https://pdlink.in/45ci02k

Google :- https://pdlink.in/3YsujTV

Microsoft :- https://pdlink.in/441GCKF

Standford :- https://pdlink.in/3ThPwNw

IIM :- https://pdlink.in/4nfXDrV

Enroll for FREE & Get Certified 🎓
1
Many people pay too much to learn SQL, but my mission is to break down barriers. I have shared complete learning series to learn SQL from scratch.

Here are the links to the SQL series

Complete SQL Topics for Data Analyst: https://news.1rj.ru/str/sqlspecialist/523

Part-1: https://news.1rj.ru/str/sqlspecialist/524

Part-2: https://news.1rj.ru/str/sqlspecialist/525

Part-3: https://news.1rj.ru/str/sqlspecialist/526

Part-4: https://news.1rj.ru/str/sqlspecialist/527

Part-5: https://news.1rj.ru/str/sqlspecialist/529

Part-6: https://news.1rj.ru/str/sqlspecialist/534

Part-7: https://news.1rj.ru/str/sqlspecialist/534

Part-8: https://news.1rj.ru/str/sqlspecialist/536

Part-9: https://news.1rj.ru/str/sqlspecialist/537

Part-10: https://news.1rj.ru/str/sqlspecialist/539

Part-11: https://news.1rj.ru/str/sqlspecialist/540

Part-12:
https://news.1rj.ru/str/sqlspecialist/541

Part-13: https://news.1rj.ru/str/sqlspecialist/542

Part-14: https://news.1rj.ru/str/sqlspecialist/544

Part-15: https://news.1rj.ru/str/sqlspecialist/545

Part-16: https://news.1rj.ru/str/sqlspecialist/546

Part-17: https://news.1rj.ru/str/sqlspecialist/549

Part-18: https://news.1rj.ru/str/sqlspecialist/552

Part-19: https://news.1rj.ru/str/sqlspecialist/555

Part-20: https://news.1rj.ru/str/sqlspecialist/556

I saw a lot of big influencers copy pasting my content after removing the credits. It's absolutely fine for me as more people are getting free education because of my content.

But I will really appreciate if you share credits for the time and efforts I put in to create such valuable content. I hope you can understand.

Complete Python Topics for Data Analysts: https://news.1rj.ru/str/sqlspecialist/548

Complete Excel Topics for Data Analysts: https://news.1rj.ru/str/sqlspecialist/547

I'll continue with learning series on Python, Power BI, Excel & Tableau.

Thanks to all who support our channel and share the content with proper credits. You guys are really amazing.

Hope it helps :)
2
🚀 𝗟𝗲𝗮𝗿𝗻 𝗖𝗢𝗗𝗜𝗡𝗚 𝗙𝗶𝗿𝘀𝘁 – 𝗣𝗮𝘆 𝗔𝗳𝘁𝗲𝗿 𝗣𝗟𝗔𝗖𝗘𝗠𝗘𝗡𝗧! 💻

🔥 Highlights:
𝟰𝟭𝗟𝗣𝗔 - Highest Package
𝟳.𝟰𝗟𝗣𝗔 - Average Package
𝟱𝟬𝟬+ Hiring Partners
𝟮𝟬𝟬𝟬+ Students Placed

🎯 Zero upfront cost. Learn now, pay after you land your dream job!

 Eligibility:- BTech / BCA / BSc / MCA / MSc

🔗 𝐑𝐞𝐠𝐢𝐬𝐭𝐞𝐫 𝐍𝐨𝐰👇:-

 https://pdlink.in/4hO7rWY

Hurry! Limited Seats Available🏃‍♂️
1
Essential Python Libraries to build your career in Data Science 📊👇

1. NumPy:
- Efficient numerical operations and array manipulation.

2. Pandas:
- Data manipulation and analysis with powerful data structures (DataFrame, Series).

3. Matplotlib:
- 2D plotting library for creating visualizations.

4. Seaborn:
- Statistical data visualization built on top of Matplotlib.

5. Scikit-learn:
- Machine learning toolkit for classification, regression, clustering, etc.

6. TensorFlow:
- Open-source machine learning framework for building and deploying ML models.

7. PyTorch:
- Deep learning library, particularly popular for neural network research.

8. SciPy:
- Library for scientific and technical computing.

9. Statsmodels:
- Statistical modeling and econometrics in Python.

10. NLTK (Natural Language Toolkit):
- Tools for working with human language data (text).

11. Gensim:
- Topic modeling and document similarity analysis.

12. Keras:
- High-level neural networks API, running on top of TensorFlow.

13. Plotly:
- Interactive graphing library for making interactive plots.

14. Beautiful Soup:
- Web scraping library for pulling data out of HTML and XML files.

15. OpenCV:
- Library for computer vision tasks.

As a beginner, you can start with Pandas and NumPy for data manipulation and analysis. For data visualization, Matplotlib and Seaborn are great starting points. As you progress, you can explore machine learning with Scikit-learn, TensorFlow, and PyTorch.

Free Notes & Books to learn Data Science: https://news.1rj.ru/str/datasciencefree

Python Project Ideas: https://news.1rj.ru/str/dsabooks/85

Best Resources to learn Python & Data Science 👇👇

Python Tutorial

Data Science Course by Kaggle

Machine Learning Course by Google

Best Data Science & Machine Learning Resources

Interview Process for Data Science Role at Amazon

Python Interview Resources

Join @free4unow_backup for more free courses

Like for more ❤️

ENJOY LEARNING👍👍
1
Forwarded from Data Analytics
𝐌𝐢𝐜𝐫𝐨𝐬𝐨𝐟𝐭 𝐅𝐑𝐄𝐄 𝐂𝐞𝐫𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 𝐂𝐨𝐮𝐫𝐬𝐞𝐬!🚀💻

Supercharge your career with 5 FREE Microsoft certification courses designed to boost your data analytics skills!

𝐄𝐧𝐫𝐨𝐥𝐥 𝐅𝐨𝐫 𝐅𝐑𝐄𝐄👇 :-

https://bit.ly/3Vlixcq

- Earn certifications to showcase your skills

Don’t wait—start your journey to success today!
2
4 Career Paths In Data Analytics

1) Data Analyst:

Role: Data Analysts interpret data and provide actionable insights through reports and visualizations.

They focus on querying databases, analyzing trends, and creating dashboards to help businesses make data-driven decisions.

Skills: Proficiency in SQL, Excel, data visualization tools (like Tableau or Power BI), and a good grasp of statistics.

Typical Tasks: Generating reports, creating visualizations, identifying trends and patterns, and presenting findings to stakeholders.


2)Data Scientist:

Role: Data Scientists use advanced statistical techniques, machine learning algorithms, and programming to analyze and interpret complex data.

They develop models to predict future trends and solve intricate problems.
Skills: Strong programming skills (Python, R), knowledge of machine learning, statistical analysis, data manipulation, and data visualization.

Typical Tasks: Building predictive models, performing complex data analyses, developing machine learning algorithms, and working with big data technologies.


3)Business Intelligence (BI) Analyst:

Role: BI Analysts focus on leveraging data to help businesses make strategic decisions.

They create and manage BI tools and systems, analyze business performance, and provide strategic recommendations.

Skills: Experience with BI tools (such as Power BI, Tableau, or Qlik), strong analytical skills, and knowledge of business operations and strategy.

Typical Tasks: Designing and maintaining dashboards and reports, analyzing business performance metrics, and providing insights for strategic planning.

4)Data Engineer:

Role: Data Engineers build and maintain the infrastructure required for data generation, storage, and processing. They ensure that data pipelines are efficient and reliable, and they prepare data for analysis.

Skills: Proficiency in programming languages (such as Python, Java, or Scala), experience with database management systems (SQL and NoSQL), and knowledge of data warehousing and ETL (Extract, Transform, Load) processes.

Typical Tasks: Designing and building data pipelines, managing and optimizing databases, ensuring data quality, and collaborating with data scientists and analysts.

I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Hope this helps you 😊
1
𝗛𝗶𝗴𝗵𝗹𝘆 𝗗𝗲𝗺𝗮𝗻𝗱𝗶𝗻𝗴 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 - 𝗘𝗿𝗼𝗹𝗹 𝗙𝗼𝗿 𝗙𝗥𝗘𝗘😍 

Industry-approved Certifications to enhance employability

𝗔𝗜 & 𝗠𝗟 :- https://pdlink.in/4nwV054

𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 :-https://pdlink.in/4l3nFx0

𝗖𝗹𝗼𝘂𝗱 𝗖𝗼𝗺𝗽𝘂𝘁𝗶𝗻𝗴 :- https://pdlink.in/4lteAgN

𝗖𝘆𝗯𝗲𝗿 𝗦𝗲𝗰𝘂𝗿𝗶𝘁𝘆 :- https://pdlink.in/3ZLHHmW

𝗢𝘁𝗵𝗲𝗿 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 :-https://pdlink.in/3G5G9O4

𝗠𝗼𝗰𝗸 𝗔𝘀𝘀𝗲𝘀𝘀𝗺𝗲𝗻𝘁:- https://pdlink.in/4kan6A9

Get the Govt. of India Incentives on course completion🎓
Artificial Intelligence isn't easy!

It’s the cutting-edge field that enables machines to think, learn, and act like humans.

To truly master Artificial Intelligence, focus on these key areas:

0. Understanding AI Fundamentals: Learn the basic concepts of AI, including search algorithms, knowledge representation, and decision trees.


1. Mastering Machine Learning: Since ML is a core part of AI, dive into supervised, unsupervised, and reinforcement learning techniques.


2. Exploring Deep Learning: Learn neural networks, CNNs, RNNs, and GANs to handle tasks like image recognition, NLP, and generative models.


3. Working with Natural Language Processing (NLP): Understand how machines process human language for tasks like sentiment analysis, translation, and chatbots.


4. Learning Reinforcement Learning: Study how agents learn by interacting with environments to maximize rewards (e.g., in gaming or robotics).


5. Building AI Models: Use popular frameworks like TensorFlow, PyTorch, and Keras to build, train, and evaluate your AI models.


6. Ethics and Bias in AI: Understand the ethical considerations and challenges of implementing AI responsibly, including fairness, transparency, and bias.


7. Computer Vision: Master image processing techniques, object detection, and recognition algorithms for AI-powered visual applications.


8. AI for Robotics: Learn how AI helps robots navigate, sense, and interact with the physical world.


9. Staying Updated with AI Research: AI is an ever-evolving field—stay on top of cutting-edge advancements, papers, and new algorithms.



Artificial Intelligence is a multidisciplinary field that blends computer science, mathematics, and creativity.

💡 Embrace the journey of learning and building systems that can reason, understand, and adapt.

With dedication, hands-on practice, and continuous learning, you’ll contribute to shaping the future of intelligent systems!

Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://news.1rj.ru/str/datasciencefun

Like if you need similar content 😄👍

Hope this helps you 😊

#ai #datascience
2
𝟭𝟱-𝗗𝗮𝘆 𝗣𝘆𝘁𝗵𝗼𝗻 𝗥𝗼𝗮𝗱𝗺𝗮𝗽 𝘄𝗶𝘁𝗵 𝗙𝗥𝗘𝗘 𝗥𝗲𝘀𝗼𝘂𝗿𝗰𝗲𝘀!😍

Want to master Python but don’t know where to start? 🤔

Here’s a structured 15-day roadmap with handpicked FREE resources to help you learn Python from scratch!👨‍💻📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3Xrs6rr

✨️Bonus: Includes FREE tutorials, YouTube playlists, and coding exercises!✅️
1