SQL Interview Questions
1. How would you find duplicate records in SQL?
2.What are various types of SQL joins?
3.What is a trigger in SQL?
4.What are different DDL,DML commands in SQL?
5.What is difference between Delete, Drop and Truncate?
6.What is difference between Union and Union all?
7.Which command give Unique values?
8. What is the difference between Where and Having Clause?
9.Give the execution of keywords in SQL?
10. What is difference between IN and BETWEEN Operator?
11. What is primary and Foreign key?
12. What is an aggregate Functions?
13. What is the difference between Rank and Dense Rank?
14. List the ACID Properties and explain what they are?
15. What is the difference between % and _ in like operator?
16. What does CTE stands for?
17. What is database?what is DBMS?What is RDMS?
18.What is Alias in SQL?
19. What is Normalisation?Describe various form?
20. How do you sort the results of a query?
21. Explain the types of Window functions?
22. What is limit and offset?
23. What is candidate key?
24. Describe various types of Alter command?
25. What is Cartesian product?
Like this post if you need more content like this ❤️
1. How would you find duplicate records in SQL?
2.What are various types of SQL joins?
3.What is a trigger in SQL?
4.What are different DDL,DML commands in SQL?
5.What is difference between Delete, Drop and Truncate?
6.What is difference between Union and Union all?
7.Which command give Unique values?
8. What is the difference between Where and Having Clause?
9.Give the execution of keywords in SQL?
10. What is difference between IN and BETWEEN Operator?
11. What is primary and Foreign key?
12. What is an aggregate Functions?
13. What is the difference between Rank and Dense Rank?
14. List the ACID Properties and explain what they are?
15. What is the difference between % and _ in like operator?
16. What does CTE stands for?
17. What is database?what is DBMS?What is RDMS?
18.What is Alias in SQL?
19. What is Normalisation?Describe various form?
20. How do you sort the results of a query?
21. Explain the types of Window functions?
22. What is limit and offset?
23. What is candidate key?
24. Describe various types of Alter command?
25. What is Cartesian product?
Like this post if you need more content like this ❤️
❤4
𝗜𝗻𝗱𝘂𝘀𝘁𝗿𝘆 𝗔𝗽𝗽𝗿𝗼𝘃𝗲𝗱 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 😍
Whether you’re interested in AI, Data Analytics, Cybersecurity, or Cloud Computing, there’s something here for everyone.
✅ 100% Free Courses
✅ Govt. Incentives on Completion
✅ Self-paced Learning
✅ Certificates to Showcase on LinkedIn & Resume
✅ Mock Assessments to Test Your Skills
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/447coEk
Enroll for FREE & Get Certified 🎓
Whether you’re interested in AI, Data Analytics, Cybersecurity, or Cloud Computing, there’s something here for everyone.
✅ 100% Free Courses
✅ Govt. Incentives on Completion
✅ Self-paced Learning
✅ Certificates to Showcase on LinkedIn & Resume
✅ Mock Assessments to Test Your Skills
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/447coEk
Enroll for FREE & Get Certified 🎓
❤1
Machine Learning isn't easy!
It’s the field that powers intelligent systems and predictive models.
To truly master Machine Learning, focus on these key areas:
0. Understanding the Basics of Algorithms: Learn about linear regression, decision trees, and k-nearest neighbors to build a solid foundation.
1. Mastering Data Preprocessing: Clean, normalize, and handle missing data to prepare your datasets for training.
2. Learning Supervised Learning Techniques: Dive deep into classification and regression models, such as SVMs, random forests, and logistic regression.
3. Exploring Unsupervised Learning: Understand clustering techniques (K-means, hierarchical) and dimensionality reduction (PCA, t-SNE).
4. Mastering Model Evaluation: Use techniques like cross-validation, confusion matrices, ROC curves, and F1 scores to assess model performance.
5. Understanding Overfitting and Underfitting: Learn how to balance bias and variance to build robust models.
6. Optimizing Hyperparameters: Use grid search, random search, and Bayesian optimization to fine-tune your models for better performance.
7. Diving into Neural Networks and Deep Learning: Explore deep learning with frameworks like TensorFlow and PyTorch to create advanced models like CNNs and RNNs.
8. Working with Natural Language Processing (NLP): Master text data, sentiment analysis, and techniques like word embeddings and transformers.
9. Staying Updated with New Techniques: Machine learning evolves rapidly—keep up with emerging models, techniques, and research.
Machine learning is about learning from data and improving models over time.
💡 Embrace the challenges of building algorithms, experimenting with data, and solving complex problems.
⏳ With time, practice, and persistence, you’ll develop the expertise to create systems that learn, predict, and adapt.
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
#datascience
It’s the field that powers intelligent systems and predictive models.
To truly master Machine Learning, focus on these key areas:
0. Understanding the Basics of Algorithms: Learn about linear regression, decision trees, and k-nearest neighbors to build a solid foundation.
1. Mastering Data Preprocessing: Clean, normalize, and handle missing data to prepare your datasets for training.
2. Learning Supervised Learning Techniques: Dive deep into classification and regression models, such as SVMs, random forests, and logistic regression.
3. Exploring Unsupervised Learning: Understand clustering techniques (K-means, hierarchical) and dimensionality reduction (PCA, t-SNE).
4. Mastering Model Evaluation: Use techniques like cross-validation, confusion matrices, ROC curves, and F1 scores to assess model performance.
5. Understanding Overfitting and Underfitting: Learn how to balance bias and variance to build robust models.
6. Optimizing Hyperparameters: Use grid search, random search, and Bayesian optimization to fine-tune your models for better performance.
7. Diving into Neural Networks and Deep Learning: Explore deep learning with frameworks like TensorFlow and PyTorch to create advanced models like CNNs and RNNs.
8. Working with Natural Language Processing (NLP): Master text data, sentiment analysis, and techniques like word embeddings and transformers.
9. Staying Updated with New Techniques: Machine learning evolves rapidly—keep up with emerging models, techniques, and research.
Machine learning is about learning from data and improving models over time.
💡 Embrace the challenges of building algorithms, experimenting with data, and solving complex problems.
⏳ With time, practice, and persistence, you’ll develop the expertise to create systems that learn, predict, and adapt.
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
#datascience
❤2
Hey guys,
Here is the list of best curated Telegram Channels for free education 👇👇
Free Courses with Certificate
Web Development Free Resources
Data Science & Machine Learning
Programming Free Books
Python Free Courses
Python Interview Resources
Ethical Hacking & Cyber Security
English Speaking & Communication
Stock Marketing & Investment Banking
Coding Projects
Jobs & Internship Opportunities
Learn Digital Marketing
Crack your coding Interviews
Udemy Free Courses with Certificate
Earn $10000 with ChatGPT
Google Jobs
Java Programming Free Resources
Learn Blockchain & Crypto
Data Analyst Jobs
Artificial Intelligence
Free access to all the Paid Channels
👇👇
https://news.1rj.ru/str/addlist/4q2PYC0pH_VjZDk5
Do react with ♥️ if you need more content free resources
ENJOY LEARNING 👍👍
Here is the list of best curated Telegram Channels for free education 👇👇
Free Courses with Certificate
Web Development Free Resources
Data Science & Machine Learning
Programming Free Books
Python Free Courses
Python Interview Resources
Ethical Hacking & Cyber Security
English Speaking & Communication
Stock Marketing & Investment Banking
Coding Projects
Jobs & Internship Opportunities
Learn Digital Marketing
Crack your coding Interviews
Udemy Free Courses with Certificate
Earn $10000 with ChatGPT
Google Jobs
Java Programming Free Resources
Learn Blockchain & Crypto
Data Analyst Jobs
Artificial Intelligence
Free access to all the Paid Channels
👇👇
https://news.1rj.ru/str/addlist/4q2PYC0pH_VjZDk5
Do react with ♥️ if you need more content free resources
ENJOY LEARNING 👍👍
❤2😁1
𝗧𝗼𝗽 𝗖𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀 & 𝗟𝗲𝗮𝗱𝗶𝗻𝗴 𝗖𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀 𝗢𝗳𝗳𝗲𝗿𝗶𝗻𝗴 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 😍
Harward :- https://pdlink.in/4kmYOn1
MIT :- https://pdlink.in/45cvR95
HP :- https://pdlink.in/45ci02k
Google :- https://pdlink.in/3YsujTV
Microsoft :- https://pdlink.in/441GCKF
Standford :- https://pdlink.in/3ThPwNw
IIM :- https://pdlink.in/4nfXDrV
Enroll for FREE & Get Certified 🎓
Harward :- https://pdlink.in/4kmYOn1
MIT :- https://pdlink.in/45cvR95
HP :- https://pdlink.in/45ci02k
Google :- https://pdlink.in/3YsujTV
Microsoft :- https://pdlink.in/441GCKF
Standford :- https://pdlink.in/3ThPwNw
IIM :- https://pdlink.in/4nfXDrV
Enroll for FREE & Get Certified 🎓
❤1
Many people pay too much to learn SQL, but my mission is to break down barriers. I have shared complete learning series to learn SQL from scratch.
Here are the links to the SQL series
Complete SQL Topics for Data Analyst: https://news.1rj.ru/str/sqlspecialist/523
Part-1: https://news.1rj.ru/str/sqlspecialist/524
Part-2: https://news.1rj.ru/str/sqlspecialist/525
Part-3: https://news.1rj.ru/str/sqlspecialist/526
Part-4: https://news.1rj.ru/str/sqlspecialist/527
Part-5: https://news.1rj.ru/str/sqlspecialist/529
Part-6: https://news.1rj.ru/str/sqlspecialist/534
Part-7: https://news.1rj.ru/str/sqlspecialist/534
Part-8: https://news.1rj.ru/str/sqlspecialist/536
Part-9: https://news.1rj.ru/str/sqlspecialist/537
Part-10: https://news.1rj.ru/str/sqlspecialist/539
Part-11: https://news.1rj.ru/str/sqlspecialist/540
Part-12:
https://news.1rj.ru/str/sqlspecialist/541
Part-13: https://news.1rj.ru/str/sqlspecialist/542
Part-14: https://news.1rj.ru/str/sqlspecialist/544
Part-15: https://news.1rj.ru/str/sqlspecialist/545
Part-16: https://news.1rj.ru/str/sqlspecialist/546
Part-17: https://news.1rj.ru/str/sqlspecialist/549
Part-18: https://news.1rj.ru/str/sqlspecialist/552
Part-19: https://news.1rj.ru/str/sqlspecialist/555
Part-20: https://news.1rj.ru/str/sqlspecialist/556
I saw a lot of big influencers copy pasting my content after removing the credits. It's absolutely fine for me as more people are getting free education because of my content.
But I will really appreciate if you share credits for the time and efforts I put in to create such valuable content. I hope you can understand.
Complete Python Topics for Data Analysts: https://news.1rj.ru/str/sqlspecialist/548
Complete Excel Topics for Data Analysts: https://news.1rj.ru/str/sqlspecialist/547
I'll continue with learning series on Python, Power BI, Excel & Tableau.
Thanks to all who support our channel and share the content with proper credits. You guys are really amazing.
Hope it helps :)
Here are the links to the SQL series
Complete SQL Topics for Data Analyst: https://news.1rj.ru/str/sqlspecialist/523
Part-1: https://news.1rj.ru/str/sqlspecialist/524
Part-2: https://news.1rj.ru/str/sqlspecialist/525
Part-3: https://news.1rj.ru/str/sqlspecialist/526
Part-4: https://news.1rj.ru/str/sqlspecialist/527
Part-5: https://news.1rj.ru/str/sqlspecialist/529
Part-6: https://news.1rj.ru/str/sqlspecialist/534
Part-7: https://news.1rj.ru/str/sqlspecialist/534
Part-8: https://news.1rj.ru/str/sqlspecialist/536
Part-9: https://news.1rj.ru/str/sqlspecialist/537
Part-10: https://news.1rj.ru/str/sqlspecialist/539
Part-11: https://news.1rj.ru/str/sqlspecialist/540
Part-12:
https://news.1rj.ru/str/sqlspecialist/541
Part-13: https://news.1rj.ru/str/sqlspecialist/542
Part-14: https://news.1rj.ru/str/sqlspecialist/544
Part-15: https://news.1rj.ru/str/sqlspecialist/545
Part-16: https://news.1rj.ru/str/sqlspecialist/546
Part-17: https://news.1rj.ru/str/sqlspecialist/549
Part-18: https://news.1rj.ru/str/sqlspecialist/552
Part-19: https://news.1rj.ru/str/sqlspecialist/555
Part-20: https://news.1rj.ru/str/sqlspecialist/556
I saw a lot of big influencers copy pasting my content after removing the credits. It's absolutely fine for me as more people are getting free education because of my content.
But I will really appreciate if you share credits for the time and efforts I put in to create such valuable content. I hope you can understand.
Complete Python Topics for Data Analysts: https://news.1rj.ru/str/sqlspecialist/548
Complete Excel Topics for Data Analysts: https://news.1rj.ru/str/sqlspecialist/547
I'll continue with learning series on Python, Power BI, Excel & Tableau.
Thanks to all who support our channel and share the content with proper credits. You guys are really amazing.
Hope it helps :)
❤2
🚀 𝗟𝗲𝗮𝗿𝗻 𝗖𝗢𝗗𝗜𝗡𝗚 𝗙𝗶𝗿𝘀𝘁 – 𝗣𝗮𝘆 𝗔𝗳𝘁𝗲𝗿 𝗣𝗟𝗔𝗖𝗘𝗠𝗘𝗡𝗧! 💻
🔥 Highlights:
✅ 𝟰𝟭𝗟𝗣𝗔 - Highest Package
✅ 𝟳.𝟰𝗟𝗣𝗔 - Average Package
✅ 𝟱𝟬𝟬+ Hiring Partners
✅ 𝟮𝟬𝟬𝟬+ Students Placed
🎯 Zero upfront cost. Learn now, pay after you land your dream job!
Eligibility:- BTech / BCA / BSc / MCA / MSc
🔗 𝐑𝐞𝐠𝐢𝐬𝐭𝐞𝐫 𝐍𝐨𝐰👇:-
https://pdlink.in/4hO7rWY
Hurry! Limited Seats Available🏃♂️
🔥 Highlights:
✅ 𝟰𝟭𝗟𝗣𝗔 - Highest Package
✅ 𝟳.𝟰𝗟𝗣𝗔 - Average Package
✅ 𝟱𝟬𝟬+ Hiring Partners
✅ 𝟮𝟬𝟬𝟬+ Students Placed
🎯 Zero upfront cost. Learn now, pay after you land your dream job!
Eligibility:- BTech / BCA / BSc / MCA / MSc
🔗 𝐑𝐞𝐠𝐢𝐬𝐭𝐞𝐫 𝐍𝐨𝐰👇:-
https://pdlink.in/4hO7rWY
Hurry! Limited Seats Available🏃♂️
❤1
Essential Python Libraries to build your career in Data Science 📊👇
1. NumPy:
- Efficient numerical operations and array manipulation.
2. Pandas:
- Data manipulation and analysis with powerful data structures (DataFrame, Series).
3. Matplotlib:
- 2D plotting library for creating visualizations.
4. Seaborn:
- Statistical data visualization built on top of Matplotlib.
5. Scikit-learn:
- Machine learning toolkit for classification, regression, clustering, etc.
6. TensorFlow:
- Open-source machine learning framework for building and deploying ML models.
7. PyTorch:
- Deep learning library, particularly popular for neural network research.
8. SciPy:
- Library for scientific and technical computing.
9. Statsmodels:
- Statistical modeling and econometrics in Python.
10. NLTK (Natural Language Toolkit):
- Tools for working with human language data (text).
11. Gensim:
- Topic modeling and document similarity analysis.
12. Keras:
- High-level neural networks API, running on top of TensorFlow.
13. Plotly:
- Interactive graphing library for making interactive plots.
14. Beautiful Soup:
- Web scraping library for pulling data out of HTML and XML files.
15. OpenCV:
- Library for computer vision tasks.
As a beginner, you can start with Pandas and NumPy for data manipulation and analysis. For data visualization, Matplotlib and Seaborn are great starting points. As you progress, you can explore machine learning with Scikit-learn, TensorFlow, and PyTorch.
Free Notes & Books to learn Data Science: https://news.1rj.ru/str/datasciencefree
Python Project Ideas: https://news.1rj.ru/str/dsabooks/85
Best Resources to learn Python & Data Science 👇👇
Python Tutorial
Data Science Course by Kaggle
Machine Learning Course by Google
Best Data Science & Machine Learning Resources
Interview Process for Data Science Role at Amazon
Python Interview Resources
Join @free4unow_backup for more free courses
Like for more ❤️
ENJOY LEARNING👍👍
1. NumPy:
- Efficient numerical operations and array manipulation.
2. Pandas:
- Data manipulation and analysis with powerful data structures (DataFrame, Series).
3. Matplotlib:
- 2D plotting library for creating visualizations.
4. Seaborn:
- Statistical data visualization built on top of Matplotlib.
5. Scikit-learn:
- Machine learning toolkit for classification, regression, clustering, etc.
6. TensorFlow:
- Open-source machine learning framework for building and deploying ML models.
7. PyTorch:
- Deep learning library, particularly popular for neural network research.
8. SciPy:
- Library for scientific and technical computing.
9. Statsmodels:
- Statistical modeling and econometrics in Python.
10. NLTK (Natural Language Toolkit):
- Tools for working with human language data (text).
11. Gensim:
- Topic modeling and document similarity analysis.
12. Keras:
- High-level neural networks API, running on top of TensorFlow.
13. Plotly:
- Interactive graphing library for making interactive plots.
14. Beautiful Soup:
- Web scraping library for pulling data out of HTML and XML files.
15. OpenCV:
- Library for computer vision tasks.
As a beginner, you can start with Pandas and NumPy for data manipulation and analysis. For data visualization, Matplotlib and Seaborn are great starting points. As you progress, you can explore machine learning with Scikit-learn, TensorFlow, and PyTorch.
Free Notes & Books to learn Data Science: https://news.1rj.ru/str/datasciencefree
Python Project Ideas: https://news.1rj.ru/str/dsabooks/85
Best Resources to learn Python & Data Science 👇👇
Python Tutorial
Data Science Course by Kaggle
Machine Learning Course by Google
Best Data Science & Machine Learning Resources
Interview Process for Data Science Role at Amazon
Python Interview Resources
Join @free4unow_backup for more free courses
Like for more ❤️
ENJOY LEARNING👍👍
❤1
Forwarded from Data Analytics
𝐌𝐢𝐜𝐫𝐨𝐬𝐨𝐟𝐭 𝐅𝐑𝐄𝐄 𝐂𝐞𝐫𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 𝐂𝐨𝐮𝐫𝐬𝐞𝐬!🚀💻
Supercharge your career with 5 FREE Microsoft certification courses designed to boost your data analytics skills!
𝐄𝐧𝐫𝐨𝐥𝐥 𝐅𝐨𝐫 𝐅𝐑𝐄𝐄👇 :-
https://bit.ly/3Vlixcq
- Earn certifications to showcase your skills
Don’t wait—start your journey to success today! ✨
Supercharge your career with 5 FREE Microsoft certification courses designed to boost your data analytics skills!
𝐄𝐧𝐫𝐨𝐥𝐥 𝐅𝐨𝐫 𝐅𝐑𝐄𝐄👇 :-
https://bit.ly/3Vlixcq
- Earn certifications to showcase your skills
Don’t wait—start your journey to success today! ✨
❤2
4 Career Paths In Data Analytics
1) Data Analyst:
Role: Data Analysts interpret data and provide actionable insights through reports and visualizations.
They focus on querying databases, analyzing trends, and creating dashboards to help businesses make data-driven decisions.
Skills: Proficiency in SQL, Excel, data visualization tools (like Tableau or Power BI), and a good grasp of statistics.
Typical Tasks: Generating reports, creating visualizations, identifying trends and patterns, and presenting findings to stakeholders.
2)Data Scientist:
Role: Data Scientists use advanced statistical techniques, machine learning algorithms, and programming to analyze and interpret complex data.
They develop models to predict future trends and solve intricate problems.
Skills: Strong programming skills (Python, R), knowledge of machine learning, statistical analysis, data manipulation, and data visualization.
Typical Tasks: Building predictive models, performing complex data analyses, developing machine learning algorithms, and working with big data technologies.
3)Business Intelligence (BI) Analyst:
Role: BI Analysts focus on leveraging data to help businesses make strategic decisions.
They create and manage BI tools and systems, analyze business performance, and provide strategic recommendations.
Skills: Experience with BI tools (such as Power BI, Tableau, or Qlik), strong analytical skills, and knowledge of business operations and strategy.
Typical Tasks: Designing and maintaining dashboards and reports, analyzing business performance metrics, and providing insights for strategic planning.
4)Data Engineer:
Role: Data Engineers build and maintain the infrastructure required for data generation, storage, and processing. They ensure that data pipelines are efficient and reliable, and they prepare data for analysis.
Skills: Proficiency in programming languages (such as Python, Java, or Scala), experience with database management systems (SQL and NoSQL), and knowledge of data warehousing and ETL (Extract, Transform, Load) processes.
Typical Tasks: Designing and building data pipelines, managing and optimizing databases, ensuring data quality, and collaborating with data scientists and analysts.
I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Hope this helps you 😊
1) Data Analyst:
Role: Data Analysts interpret data and provide actionable insights through reports and visualizations.
They focus on querying databases, analyzing trends, and creating dashboards to help businesses make data-driven decisions.
Skills: Proficiency in SQL, Excel, data visualization tools (like Tableau or Power BI), and a good grasp of statistics.
Typical Tasks: Generating reports, creating visualizations, identifying trends and patterns, and presenting findings to stakeholders.
2)Data Scientist:
Role: Data Scientists use advanced statistical techniques, machine learning algorithms, and programming to analyze and interpret complex data.
They develop models to predict future trends and solve intricate problems.
Skills: Strong programming skills (Python, R), knowledge of machine learning, statistical analysis, data manipulation, and data visualization.
Typical Tasks: Building predictive models, performing complex data analyses, developing machine learning algorithms, and working with big data technologies.
3)Business Intelligence (BI) Analyst:
Role: BI Analysts focus on leveraging data to help businesses make strategic decisions.
They create and manage BI tools and systems, analyze business performance, and provide strategic recommendations.
Skills: Experience with BI tools (such as Power BI, Tableau, or Qlik), strong analytical skills, and knowledge of business operations and strategy.
Typical Tasks: Designing and maintaining dashboards and reports, analyzing business performance metrics, and providing insights for strategic planning.
4)Data Engineer:
Role: Data Engineers build and maintain the infrastructure required for data generation, storage, and processing. They ensure that data pipelines are efficient and reliable, and they prepare data for analysis.
Skills: Proficiency in programming languages (such as Python, Java, or Scala), experience with database management systems (SQL and NoSQL), and knowledge of data warehousing and ETL (Extract, Transform, Load) processes.
Typical Tasks: Designing and building data pipelines, managing and optimizing databases, ensuring data quality, and collaborating with data scientists and analysts.
I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Hope this helps you 😊
❤1
𝗛𝗶𝗴𝗵𝗹𝘆 𝗗𝗲𝗺𝗮𝗻𝗱𝗶𝗻𝗴 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 - 𝗘𝗿𝗼𝗹𝗹 𝗙𝗼𝗿 𝗙𝗥𝗘𝗘😍
Industry-approved Certifications to enhance employability
𝗔𝗜 & 𝗠𝗟 :- https://pdlink.in/4nwV054
𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 :-https://pdlink.in/4l3nFx0
𝗖𝗹𝗼𝘂𝗱 𝗖𝗼𝗺𝗽𝘂𝘁𝗶𝗻𝗴 :- https://pdlink.in/4lteAgN
𝗖𝘆𝗯𝗲𝗿 𝗦𝗲𝗰𝘂𝗿𝗶𝘁𝘆 :- https://pdlink.in/3ZLHHmW
𝗢𝘁𝗵𝗲𝗿 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 :-https://pdlink.in/3G5G9O4
𝗠𝗼𝗰𝗸 𝗔𝘀𝘀𝗲𝘀𝘀𝗺𝗲𝗻𝘁:- https://pdlink.in/4kan6A9
Get the Govt. of India Incentives on course completion🎓
Industry-approved Certifications to enhance employability
𝗔𝗜 & 𝗠𝗟 :- https://pdlink.in/4nwV054
𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 :-https://pdlink.in/4l3nFx0
𝗖𝗹𝗼𝘂𝗱 𝗖𝗼𝗺𝗽𝘂𝘁𝗶𝗻𝗴 :- https://pdlink.in/4lteAgN
𝗖𝘆𝗯𝗲𝗿 𝗦𝗲𝗰𝘂𝗿𝗶𝘁𝘆 :- https://pdlink.in/3ZLHHmW
𝗢𝘁𝗵𝗲𝗿 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 :-https://pdlink.in/3G5G9O4
𝗠𝗼𝗰𝗸 𝗔𝘀𝘀𝗲𝘀𝘀𝗺𝗲𝗻𝘁:- https://pdlink.in/4kan6A9
Get the Govt. of India Incentives on course completion🎓
Artificial Intelligence isn't easy!
It’s the cutting-edge field that enables machines to think, learn, and act like humans.
To truly master Artificial Intelligence, focus on these key areas:
0. Understanding AI Fundamentals: Learn the basic concepts of AI, including search algorithms, knowledge representation, and decision trees.
1. Mastering Machine Learning: Since ML is a core part of AI, dive into supervised, unsupervised, and reinforcement learning techniques.
2. Exploring Deep Learning: Learn neural networks, CNNs, RNNs, and GANs to handle tasks like image recognition, NLP, and generative models.
3. Working with Natural Language Processing (NLP): Understand how machines process human language for tasks like sentiment analysis, translation, and chatbots.
4. Learning Reinforcement Learning: Study how agents learn by interacting with environments to maximize rewards (e.g., in gaming or robotics).
5. Building AI Models: Use popular frameworks like TensorFlow, PyTorch, and Keras to build, train, and evaluate your AI models.
6. Ethics and Bias in AI: Understand the ethical considerations and challenges of implementing AI responsibly, including fairness, transparency, and bias.
7. Computer Vision: Master image processing techniques, object detection, and recognition algorithms for AI-powered visual applications.
8. AI for Robotics: Learn how AI helps robots navigate, sense, and interact with the physical world.
9. Staying Updated with AI Research: AI is an ever-evolving field—stay on top of cutting-edge advancements, papers, and new algorithms.
Artificial Intelligence is a multidisciplinary field that blends computer science, mathematics, and creativity.
💡 Embrace the journey of learning and building systems that can reason, understand, and adapt.
⏳ With dedication, hands-on practice, and continuous learning, you’ll contribute to shaping the future of intelligent systems!
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
#ai #datascience
It’s the cutting-edge field that enables machines to think, learn, and act like humans.
To truly master Artificial Intelligence, focus on these key areas:
0. Understanding AI Fundamentals: Learn the basic concepts of AI, including search algorithms, knowledge representation, and decision trees.
1. Mastering Machine Learning: Since ML is a core part of AI, dive into supervised, unsupervised, and reinforcement learning techniques.
2. Exploring Deep Learning: Learn neural networks, CNNs, RNNs, and GANs to handle tasks like image recognition, NLP, and generative models.
3. Working with Natural Language Processing (NLP): Understand how machines process human language for tasks like sentiment analysis, translation, and chatbots.
4. Learning Reinforcement Learning: Study how agents learn by interacting with environments to maximize rewards (e.g., in gaming or robotics).
5. Building AI Models: Use popular frameworks like TensorFlow, PyTorch, and Keras to build, train, and evaluate your AI models.
6. Ethics and Bias in AI: Understand the ethical considerations and challenges of implementing AI responsibly, including fairness, transparency, and bias.
7. Computer Vision: Master image processing techniques, object detection, and recognition algorithms for AI-powered visual applications.
8. AI for Robotics: Learn how AI helps robots navigate, sense, and interact with the physical world.
9. Staying Updated with AI Research: AI is an ever-evolving field—stay on top of cutting-edge advancements, papers, and new algorithms.
Artificial Intelligence is a multidisciplinary field that blends computer science, mathematics, and creativity.
💡 Embrace the journey of learning and building systems that can reason, understand, and adapt.
⏳ With dedication, hands-on practice, and continuous learning, you’ll contribute to shaping the future of intelligent systems!
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
#ai #datascience
❤2
𝟭𝟱-𝗗𝗮𝘆 𝗣𝘆𝘁𝗵𝗼𝗻 𝗥𝗼𝗮𝗱𝗺𝗮𝗽 𝘄𝗶𝘁𝗵 𝗙𝗥𝗘𝗘 𝗥𝗲𝘀𝗼𝘂𝗿𝗰𝗲𝘀!😍
Want to master Python but don’t know where to start? 🤔
Here’s a structured 15-day roadmap with handpicked FREE resources to help you learn Python from scratch!👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3Xrs6rr
✨️Bonus: Includes FREE tutorials, YouTube playlists, and coding exercises!✅️
Want to master Python but don’t know where to start? 🤔
Here’s a structured 15-day roadmap with handpicked FREE resources to help you learn Python from scratch!👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3Xrs6rr
✨️Bonus: Includes FREE tutorials, YouTube playlists, and coding exercises!✅️
❤1