Machine learning books and papers – Telegram
📃SOCIAL NETWORK ANALYSIS: FROM GRAPH THEORY TO APPLICATIONS

📎 Study paper

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
Please open Telegram to view this post
VIEW IN TELEGRAM
Exercises in Machine Learning

📚 Book


@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31
📑 Advancing biomedical discovery and innovation in the era of big data and artificial intelligence
💥 Perspective Article



📎 Study the paper

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Improving LLM Reasoning using SElf-generated data:RL and Verifiers

📓 Slides

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Recommendation with Generative Models

📓 Book

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
📃 Natural Language Processing Methods for the Study of Protein-Ligand Interactions

🗓Publish year: 2024



📎 Study the paper
@Machine_learn
👍1
Here are some Hyperparameter (HP) tuning & optimization packages you can use in your projects:

- Scikit-Optimize: https://lnkd.in/gbJqdFq9
- Optuna: https://optuna.org/
- Hyperopt: https://lnkd.in/gPSRhW_6
- Ray.tune: https://lnkd.in/gzrDAbHg
- Keras tuner: https://lnkd.in/g_HDHiug
- BayesianOptimization: https://lnkd.in/g8UKEvjc
- Metric Optimization Engine (MOE): https://lnkd.in/g89JGFB2
- Spearmint: https://lnkd.in/gJwG3AwE
- GPyOpt: https://lnkd.in/g4cWEBPz
- SigOpt: https://sigopt.com/
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
How to Train Long-Context Language Models (Effectively)

🖥 Github: https://github.com/hijkzzz/pymarl2

📕 Paper: https://arxiv.org/abs/2410.02511v1

Dataset: https://paperswithcode.com/dataset/smac

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
WiLoR: End-to-end 3D Hand Localization and Reconstruction in-the-wild

Paper: https://arxiv.org/pdf/2409.12259v1.pdf

Code: https://github.com/rolpotamias/WiLoR

Datasets: FreiHAND - HO-3D v2 - COCO-WholeBody

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
Large Brain Model for Learning Generic Representations with Tremendous EEG Data in BCI

🖥 Github: https://github.com/935963004/labram

📕Paper: https://arxiv.org/abs/2405.18765v1

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
1
Forwarded from Papers
سلام دوستاني كه مقاله براي ارسال به ژورنال دارن مي تونن بنده رو به عنوان داور در سه ژورنال زير معرفي كنند
1-Knowledge-Based system(https://www.sciencedirect.com/journal/knowledge-based-systems)
2-Machine learning with application(https://www.sciencedirect.com/journal/machine-learning-with-applications)
3-Ai(https://www.sciencedirect.com/journal/artificial-intelligence)

Name:Ramin Mousa
Email: Raminmousa@znu.ac.ir

همچنين دوستاني كه مقاله براي ارسال دارن مي تونن قبل ارسال جهت بررسي به بنده ارسال كنن تا يك پيش داوري انجام بدم.
@Raminmousa
@Paper4money
@Machine_learn
1
An Infinite Descent into Pure Mathematics

📚 Book

@Machine_learn
4👍1
Neural Networks, Machine Learning, and Image Processing

📚 book

@Machine_learn
3
Blockchain 2nd IBM Limited Edition

📓 Book

@Machine_learn
👍1
⚡️ Apple Depth Pro

# setting up a venv:
conda create -n depth-pro -y python=3.9
conda activate depth-pro
pip install -e .

# Download pretrained checkpoints:
source get_pretrained_models.sh

# Run the inference from CLI on a single image:
depth-pro-run -i ./data/example.jpg

# Running from python
from PIL import Image
import depth_pro

model, transform = depth_pro.create_model_and_transforms()
model.eval()
image, _, f_px = depth_pro.load_rgb(image_path)
image = transform(image)
prediction = model.infer(image, f_px=f_px)
depth = prediction["depth"] # Depth in [m].
focallength_px = prediction["focallength_px"] # Focal length in pixels.







🟡Demo
🟡Arxiv
🖥GitHub

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Mathematical theory of deep learning

📚 Book

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
1