OmniGen: Unified Image Generation
Paper: https://arxiv.org/pdf/2409.11340v1.pdf
Code: https://github.com/vectorspacelab/omnigen
Dataset: DreamBooth | MagicBrush
✅ @Machine_learn
Paper: https://arxiv.org/pdf/2409.11340v1.pdf
Code: https://github.com/vectorspacelab/omnigen
Dataset: DreamBooth | MagicBrush
Please open Telegram to view this post
VIEW IN TELEGRAM
📑 Advancing biomedical discovery and innovation in the era of big data and artificial intelligence
💥 Perspective Article
📎 Study the paper
✅ @Machine_learn
💥 Perspective Article
📎 Study the paper
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
📃 Natural Language Processing Methods for the Study of Protein-Ligand Interactions
🗓Publish year: 2024
📎 Study the paper
✅@Machine_learn
🗓Publish year: 2024
📎 Study the paper
✅@Machine_learn
👍1
Here are some Hyperparameter (HP) tuning & optimization packages you can use in your projects:
- Scikit-Optimize: https://lnkd.in/gbJqdFq9
- Optuna: https://optuna.org/
- Hyperopt: https://lnkd.in/gPSRhW_6
- Ray.tune: https://lnkd.in/gzrDAbHg
- Keras tuner: https://lnkd.in/g_HDHiug
- BayesianOptimization: https://lnkd.in/g8UKEvjc
- Metric Optimization Engine (MOE): https://lnkd.in/g89JGFB2
- Spearmint: https://lnkd.in/gJwG3AwE
- GPyOpt: https://lnkd.in/g4cWEBPz
- SigOpt: https://sigopt.com/
✅ @Machine_learn
- Scikit-Optimize: https://lnkd.in/gbJqdFq9
- Optuna: https://optuna.org/
- Hyperopt: https://lnkd.in/gPSRhW_6
- Ray.tune: https://lnkd.in/gzrDAbHg
- Keras tuner: https://lnkd.in/g_HDHiug
- BayesianOptimization: https://lnkd.in/g8UKEvjc
- Metric Optimization Engine (MOE): https://lnkd.in/g89JGFB2
- Spearmint: https://lnkd.in/gJwG3AwE
- GPyOpt: https://lnkd.in/g4cWEBPz
- SigOpt: https://sigopt.com/
Please open Telegram to view this post
VIEW IN TELEGRAM
lnkd.in
LinkedIn
This link will take you to a page that’s not on LinkedIn
👍2
🥪 TripoSR (MIT license) is now available on , free for individual use!
🧬code: https://github.com/VAST-AI-Research/TripoSR
📄paper: https://arxiv.org/abs/2403.02151
🍇runpod: https://github.com/camenduru/triposr-tost
🍊jupyter: https://github.com/camenduru/TripoSR-jupyter
@Machine_learn
🧬code: https://github.com/VAST-AI-Research/TripoSR
📄paper: https://arxiv.org/abs/2403.02151
🍇runpod: https://github.com/camenduru/triposr-tost
🍊jupyter: https://github.com/camenduru/TripoSR-jupyter
@Machine_learn
GitHub
GitHub - VAST-AI-Research/TripoSR: TripoSR: Fast 3D Object Reconstruction from a Single Image
TripoSR: Fast 3D Object Reconstruction from a Single Image - VAST-AI-Research/TripoSR
👍3❤1
How to Train Long-Context Language Models (Effectively)
🖥 Github: https://github.com/hijkzzz/pymarl2
📕 Paper: https://arxiv.org/abs/2410.02511v1
✅ Dataset: https://paperswithcode.com/dataset/smac
@Machine_learn
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
WiLoR: End-to-end 3D Hand Localization and Reconstruction in-the-wild
Paper: https://arxiv.org/pdf/2409.12259v1.pdf
Code: https://github.com/rolpotamias/WiLoR
Datasets: FreiHAND - HO-3D v2 - COCO-WholeBody
✅ @Machine_learn
Paper: https://arxiv.org/pdf/2409.12259v1.pdf
Code: https://github.com/rolpotamias/WiLoR
Datasets: FreiHAND - HO-3D v2 - COCO-WholeBody
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
Large Brain Model for Learning Generic Representations with Tremendous EEG Data in BCI
🖥 Github: https://github.com/935963004/labram
📕 Paper: https://arxiv.org/abs/2405.18765v1
@Machine_learn
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
Forwarded from Papers
سلام دوستاني كه مقاله براي ارسال به ژورنال دارن مي تونن بنده رو به عنوان داور در سه ژورنال زير معرفي كنند
1-Knowledge-Based system(https://www.sciencedirect.com/journal/knowledge-based-systems)
2-Machine learning with application(https://www.sciencedirect.com/journal/machine-learning-with-applications)
3-Ai(https://www.sciencedirect.com/journal/artificial-intelligence)
Name:Ramin Mousa
Email: Raminmousa@znu.ac.ir
همچنين دوستاني كه مقاله براي ارسال دارن مي تونن قبل ارسال جهت بررسي به بنده ارسال كنن تا يك پيش داوري انجام بدم.
@Raminmousa
@Paper4money
@Machine_learn
1-Knowledge-Based system(https://www.sciencedirect.com/journal/knowledge-based-systems)
2-Machine learning with application(https://www.sciencedirect.com/journal/machine-learning-with-applications)
3-Ai(https://www.sciencedirect.com/journal/artificial-intelligence)
Name:Ramin Mousa
Email: Raminmousa@znu.ac.ir
همچنين دوستاني كه مقاله براي ارسال دارن مي تونن قبل ارسال جهت بررسي به بنده ارسال كنن تا يك پيش داوري انجام بدم.
@Raminmousa
@Paper4money
@Machine_learn
❤1
This media is not supported in your browser
VIEW IN TELEGRAM
TensorIR: An Abstraction for Automatic Tensorized Program Optimization
Paper: https://arxiv.org/pdf/2207.04296v2.pdf
Codes: https://github.com/mlc-ai/web-llm - https://github.com/apache/tvm
✅ @Machine_learn
Paper: https://arxiv.org/pdf/2207.04296v2.pdf
Codes: https://github.com/mlc-ai/web-llm - https://github.com/apache/tvm
Please open Telegram to view this post
VIEW IN TELEGRAM
# setting up a venv:
conda create -n depth-pro -y python=3.9
conda activate depth-pro
pip install -e .
# Download pretrained checkpoints:
source get_pretrained_models.sh
# Run the inference from CLI on a single image:
depth-pro-run -i ./data/example.jpg
# Running from python
from PIL import Image
import depth_pro
model, transform = depth_pro.create_model_and_transforms()
model.eval()
image, _, f_px = depth_pro.load_rgb(image_path)
image = transform(image)
prediction = model.infer(image, f_px=f_px)
depth = prediction["depth"] # Depth in [m].
focallength_px = prediction["focallength_px"] # Focal length in pixels.@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM