How to Train Long-Context Language Models (Effectively)
🖥 Github: https://github.com/hijkzzz/pymarl2
📕 Paper: https://arxiv.org/abs/2410.02511v1
✅ Dataset: https://paperswithcode.com/dataset/smac
@Machine_learn
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
WiLoR: End-to-end 3D Hand Localization and Reconstruction in-the-wild
Paper: https://arxiv.org/pdf/2409.12259v1.pdf
Code: https://github.com/rolpotamias/WiLoR
Datasets: FreiHAND - HO-3D v2 - COCO-WholeBody
✅ @Machine_learn
Paper: https://arxiv.org/pdf/2409.12259v1.pdf
Code: https://github.com/rolpotamias/WiLoR
Datasets: FreiHAND - HO-3D v2 - COCO-WholeBody
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
Large Brain Model for Learning Generic Representations with Tremendous EEG Data in BCI
🖥 Github: https://github.com/935963004/labram
📕 Paper: https://arxiv.org/abs/2405.18765v1
@Machine_learn
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
Forwarded from Papers
سلام دوستاني كه مقاله براي ارسال به ژورنال دارن مي تونن بنده رو به عنوان داور در سه ژورنال زير معرفي كنند
1-Knowledge-Based system(https://www.sciencedirect.com/journal/knowledge-based-systems)
2-Machine learning with application(https://www.sciencedirect.com/journal/machine-learning-with-applications)
3-Ai(https://www.sciencedirect.com/journal/artificial-intelligence)
Name:Ramin Mousa
Email: Raminmousa@znu.ac.ir
همچنين دوستاني كه مقاله براي ارسال دارن مي تونن قبل ارسال جهت بررسي به بنده ارسال كنن تا يك پيش داوري انجام بدم.
@Raminmousa
@Paper4money
@Machine_learn
1-Knowledge-Based system(https://www.sciencedirect.com/journal/knowledge-based-systems)
2-Machine learning with application(https://www.sciencedirect.com/journal/machine-learning-with-applications)
3-Ai(https://www.sciencedirect.com/journal/artificial-intelligence)
Name:Ramin Mousa
Email: Raminmousa@znu.ac.ir
همچنين دوستاني كه مقاله براي ارسال دارن مي تونن قبل ارسال جهت بررسي به بنده ارسال كنن تا يك پيش داوري انجام بدم.
@Raminmousa
@Paper4money
@Machine_learn
❤1
This media is not supported in your browser
VIEW IN TELEGRAM
TensorIR: An Abstraction for Automatic Tensorized Program Optimization
Paper: https://arxiv.org/pdf/2207.04296v2.pdf
Codes: https://github.com/mlc-ai/web-llm - https://github.com/apache/tvm
✅ @Machine_learn
Paper: https://arxiv.org/pdf/2207.04296v2.pdf
Codes: https://github.com/mlc-ai/web-llm - https://github.com/apache/tvm
Please open Telegram to view this post
VIEW IN TELEGRAM
# setting up a venv:
conda create -n depth-pro -y python=3.9
conda activate depth-pro
pip install -e .
# Download pretrained checkpoints:
source get_pretrained_models.sh
# Run the inference from CLI on a single image:
depth-pro-run -i ./data/example.jpg
# Running from python
from PIL import Image
import depth_pro
model, transform = depth_pro.create_model_and_transforms()
model.eval()
image, _, f_px = depth_pro.load_rgb(image_path)
image = transform(image)
prediction = model.infer(image, f_px=f_px)
depth = prediction["depth"] # Depth in [m].
focallength_px = prediction["focallength_px"] # Focal length in pixels.@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Deep Learning and Computational Physics - Lecture Notes, University of South California
📓 book
@Machine_learn
📓 book
@Machine_learn
❤5
Forwarded from Github LLMs
Crawl 4 AI
Crawl4AI: Open-source LLM Friendly Web Crawler & Scrapper
Creator: UncleCode
Stars ⭐️: 8.6k
Forked By: 627
https://github.com/unclecode/crawl4ai
✅ https://news.1rj.ru/str/deep_learning_proj
Crawl4AI: Open-source LLM Friendly Web Crawler & Scrapper
Creator: UncleCode
Stars ⭐️: 8.6k
Forked By: 627
https://github.com/unclecode/crawl4ai
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - unclecode/crawl4ai: 🚀🤖 Crawl4AI: Open-source LLM Friendly Web Crawler & Scraper. Don't be shy, join here: https://dis…
🚀🤖 Crawl4AI: Open-source LLM Friendly Web Crawler & Scraper. Don't be shy, join here: https://discord.gg/jP8KfhDhyN - unclecode/crawl4ai
👍3
Generalizable and Animatable Gaussian Head Avatar
🖥 Github: https://github.com/xg-chu/gagavatar
📕 Paper: https://arxiv.org/abs/2410.07971v1
@Machine_learn
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
با عرض سلام خيلي از دوستان در رابطه با طراحي صفر تا صد پروژه هاي ديپ از بنده سوال پرسيدن داخل پك زير ٣٦ پروژه رو با جزئيات شرح دادم:
1-Deep Learning Basic
-01_Introduction
--01_How_TensorFlow_Works
2-Classification apparel
-Classification apparel double capsule
-Classification apparel double cnn
3-ALZHEIMERS USING CNN(ResNet)
4-Fake News (Covid-19 dataset)
-Multi-channel
-3DCNN model
-Base line+ Char CNN
-Fake News Covid CapsuleNet
5-3DCNN Fake News
6-recommender systems
-GRU+LSTM MovieLens
7-Multi-Domain Sentiment Analysis
-Dranziera CapsuleNet
-Dranziera CNN Multi-channel
-Dranziera LSTM
8-Persian Multi-Domain SA
-Bi-GRU Capsule Net
-Multi-CNN
9-Recommendation system
-Factorization Recommender, Ranking Factorization Recommender, Item Similarity Recommender (turicreate)
-SVD, SVD++, NMF, Slope One, k-NN, Centered k-NN, k-NN Baseline, Co-Clustering(surprise)
10-NihX-Ray
-optimized CNN on FullDataset Nih-Xray
-MobileNet
-Transfer learning
-Capsule Network on FullDataset Nih-Xray
دوستاني كه نياز به اين پروژه ها دارن ميتونن با بنده در ارتباط باشن.
@Raminmousa
@Machine_learn
1-Deep Learning Basic
-01_Introduction
--01_How_TensorFlow_Works
2-Classification apparel
-Classification apparel double capsule
-Classification apparel double cnn
3-ALZHEIMERS USING CNN(ResNet)
4-Fake News (Covid-19 dataset)
-Multi-channel
-3DCNN model
-Base line+ Char CNN
-Fake News Covid CapsuleNet
5-3DCNN Fake News
6-recommender systems
-GRU+LSTM MovieLens
7-Multi-Domain Sentiment Analysis
-Dranziera CapsuleNet
-Dranziera CNN Multi-channel
-Dranziera LSTM
8-Persian Multi-Domain SA
-Bi-GRU Capsule Net
-Multi-CNN
9-Recommendation system
-Factorization Recommender, Ranking Factorization Recommender, Item Similarity Recommender (turicreate)
-SVD, SVD++, NMF, Slope One, k-NN, Centered k-NN, k-NN Baseline, Co-Clustering(surprise)
10-NihX-Ray
-optimized CNN on FullDataset Nih-Xray
-MobileNet
-Transfer learning
-Capsule Network on FullDataset Nih-Xray
دوستاني كه نياز به اين پروژه ها دارن ميتونن با بنده در ارتباط باشن.
@Raminmousa
@Machine_learn
👍7❤1
Efficiently Democratizing Medical LLMs for 50 Languages via a Mixture of Language Family Experts
💻 Github: https://github.com/freedomintelligence/apollomoe
🔖 Paper: https://arxiv.org/abs/2410.10626v1
🤗 Dataset: https://paperswithcode.com/dataset/mmlu
✅ @Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍1