🥪 TripoSR (MIT license) is now available on , free for individual use!
🧬code: https://github.com/VAST-AI-Research/TripoSR
📄paper: https://arxiv.org/abs/2403.02151
🍇runpod: https://github.com/camenduru/triposr-tost
🍊jupyter: https://github.com/camenduru/TripoSR-jupyter
@Machine_learn
🧬code: https://github.com/VAST-AI-Research/TripoSR
📄paper: https://arxiv.org/abs/2403.02151
🍇runpod: https://github.com/camenduru/triposr-tost
🍊jupyter: https://github.com/camenduru/TripoSR-jupyter
@Machine_learn
GitHub
GitHub - VAST-AI-Research/TripoSR: TripoSR: Fast 3D Object Reconstruction from a Single Image
TripoSR: Fast 3D Object Reconstruction from a Single Image - VAST-AI-Research/TripoSR
👍3❤1
How to Train Long-Context Language Models (Effectively)
🖥 Github: https://github.com/hijkzzz/pymarl2
📕 Paper: https://arxiv.org/abs/2410.02511v1
✅ Dataset: https://paperswithcode.com/dataset/smac
@Machine_learn
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
WiLoR: End-to-end 3D Hand Localization and Reconstruction in-the-wild
Paper: https://arxiv.org/pdf/2409.12259v1.pdf
Code: https://github.com/rolpotamias/WiLoR
Datasets: FreiHAND - HO-3D v2 - COCO-WholeBody
✅ @Machine_learn
Paper: https://arxiv.org/pdf/2409.12259v1.pdf
Code: https://github.com/rolpotamias/WiLoR
Datasets: FreiHAND - HO-3D v2 - COCO-WholeBody
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
Large Brain Model for Learning Generic Representations with Tremendous EEG Data in BCI
🖥 Github: https://github.com/935963004/labram
📕 Paper: https://arxiv.org/abs/2405.18765v1
@Machine_learn
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
Forwarded from Papers
سلام دوستاني كه مقاله براي ارسال به ژورنال دارن مي تونن بنده رو به عنوان داور در سه ژورنال زير معرفي كنند
1-Knowledge-Based system(https://www.sciencedirect.com/journal/knowledge-based-systems)
2-Machine learning with application(https://www.sciencedirect.com/journal/machine-learning-with-applications)
3-Ai(https://www.sciencedirect.com/journal/artificial-intelligence)
Name:Ramin Mousa
Email: Raminmousa@znu.ac.ir
همچنين دوستاني كه مقاله براي ارسال دارن مي تونن قبل ارسال جهت بررسي به بنده ارسال كنن تا يك پيش داوري انجام بدم.
@Raminmousa
@Paper4money
@Machine_learn
1-Knowledge-Based system(https://www.sciencedirect.com/journal/knowledge-based-systems)
2-Machine learning with application(https://www.sciencedirect.com/journal/machine-learning-with-applications)
3-Ai(https://www.sciencedirect.com/journal/artificial-intelligence)
Name:Ramin Mousa
Email: Raminmousa@znu.ac.ir
همچنين دوستاني كه مقاله براي ارسال دارن مي تونن قبل ارسال جهت بررسي به بنده ارسال كنن تا يك پيش داوري انجام بدم.
@Raminmousa
@Paper4money
@Machine_learn
❤1
This media is not supported in your browser
VIEW IN TELEGRAM
TensorIR: An Abstraction for Automatic Tensorized Program Optimization
Paper: https://arxiv.org/pdf/2207.04296v2.pdf
Codes: https://github.com/mlc-ai/web-llm - https://github.com/apache/tvm
✅ @Machine_learn
Paper: https://arxiv.org/pdf/2207.04296v2.pdf
Codes: https://github.com/mlc-ai/web-llm - https://github.com/apache/tvm
Please open Telegram to view this post
VIEW IN TELEGRAM
# setting up a venv:
conda create -n depth-pro -y python=3.9
conda activate depth-pro
pip install -e .
# Download pretrained checkpoints:
source get_pretrained_models.sh
# Run the inference from CLI on a single image:
depth-pro-run -i ./data/example.jpg
# Running from python
from PIL import Image
import depth_pro
model, transform = depth_pro.create_model_and_transforms()
model.eval()
image, _, f_px = depth_pro.load_rgb(image_path)
image = transform(image)
prediction = model.infer(image, f_px=f_px)
depth = prediction["depth"] # Depth in [m].
focallength_px = prediction["focallength_px"] # Focal length in pixels.@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Deep Learning and Computational Physics - Lecture Notes, University of South California
📓 book
@Machine_learn
📓 book
@Machine_learn
❤5
Forwarded from Github LLMs
Crawl 4 AI
Crawl4AI: Open-source LLM Friendly Web Crawler & Scrapper
Creator: UncleCode
Stars ⭐️: 8.6k
Forked By: 627
https://github.com/unclecode/crawl4ai
✅ https://news.1rj.ru/str/deep_learning_proj
Crawl4AI: Open-source LLM Friendly Web Crawler & Scrapper
Creator: UncleCode
Stars ⭐️: 8.6k
Forked By: 627
https://github.com/unclecode/crawl4ai
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - unclecode/crawl4ai: 🚀🤖 Crawl4AI: Open-source LLM Friendly Web Crawler & Scraper. Don't be shy, join here: https://dis…
🚀🤖 Crawl4AI: Open-source LLM Friendly Web Crawler & Scraper. Don't be shy, join here: https://discord.gg/jP8KfhDhyN - unclecode/crawl4ai
👍3
Generalizable and Animatable Gaussian Head Avatar
🖥 Github: https://github.com/xg-chu/gagavatar
📕 Paper: https://arxiv.org/abs/2410.07971v1
@Machine_learn
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1