Machinelearning – Telegram
383K subscribers
4.45K photos
859 videos
17 files
4.89K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🧍‍♂ Texformer: 3D Human Texture Estimation from a Single Image with Transformers

Github: https://github.com/xuxy09/texformer

Paper: http://arxiv.org/abs/2109.02563

Meta data: https://www.dropbox.com/s/ekxn300cuw8bw6b/meta.zip

@ai_machinelearning_big_data
AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

Github: https://github.com/alibaba/AliceMind

Paper: https://arxiv.org/abs/2109.05687v1

Dataset: https://paperswithcode.com/dataset/glue

@ArtificialIntelligencedl
AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

Github: https://github.com/alibaba/AliceMind

Paper: https://arxiv.org/abs/2109.05687v1

Dataset: https://paperswithcode.com/dataset/glue
DensePhrases is an extractive phrase search tool based on your natural language inputs

Github: https://github.com/princeton-nlp/DensePhrases

Paper: https://arxiv.org/abs/2109.08133v1

Dataset: https://paperswithcode.com/dataset/squad

@ai_machinelearning_big_data
🤖 CompilerGym: Robust, Performant Compiler Optimization Environments for AI Research

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks.

Github: https://github.com/facebookresearch/CompilerGym

Documents: https://facebookresearch.github.io/CompilerGym/

Paper: https://arxiv.org/abs/2109.08267v1

@ai_machinelearning_big_data
📥 Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Github: https://github.com/yizhen20133868/ci-tod

Paper: https://arxiv.org/abs/2109.11292v1

Dataset: https://paperswithcode.com/dataset/kvret-1

@ai_machinelearning_big_data
🧍‍♂ PASS: Pictures without humAns for Self-Supervised Pretraining

PASS is a large-scale image dataset that does not include any humans, human parts, or other personally identifiable information.

Github: https://github.com/yukimasano/PASS

Paper: https://arxiv.org/abs/2109.13228v1

Dataset: https://paperswithcode.com/dataset/pass

Documentation: https://www.robots.ox.ac.uk/~vgg/research/pass/

@ai_machinelearning_big_data