Machinelearning – Telegram
383K subscribers
4.45K photos
859 videos
17 files
4.89K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

Github: https://github.com/alibaba/AliceMind

Paper: https://arxiv.org/abs/2109.05687v1

Dataset: https://paperswithcode.com/dataset/glue
DensePhrases is an extractive phrase search tool based on your natural language inputs

Github: https://github.com/princeton-nlp/DensePhrases

Paper: https://arxiv.org/abs/2109.08133v1

Dataset: https://paperswithcode.com/dataset/squad

@ai_machinelearning_big_data
🤖 CompilerGym: Robust, Performant Compiler Optimization Environments for AI Research

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks.

Github: https://github.com/facebookresearch/CompilerGym

Documents: https://facebookresearch.github.io/CompilerGym/

Paper: https://arxiv.org/abs/2109.08267v1

@ai_machinelearning_big_data
📥 Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Github: https://github.com/yizhen20133868/ci-tod

Paper: https://arxiv.org/abs/2109.11292v1

Dataset: https://paperswithcode.com/dataset/kvret-1

@ai_machinelearning_big_data
🧍‍♂ PASS: Pictures without humAns for Self-Supervised Pretraining

PASS is a large-scale image dataset that does not include any humans, human parts, or other personally identifiable information.

Github: https://github.com/yukimasano/PASS

Paper: https://arxiv.org/abs/2109.13228v1

Dataset: https://paperswithcode.com/dataset/pass

Documentation: https://www.robots.ox.ac.uk/~vgg/research/pass/

@ai_machinelearning_big_data
🧠 С момента выкладки библиотеки CatBoost в опенсорс прошло 100 лет! (Это если считать в двоичной системе счисления). Но главная новость в другом: библиотека обновилась до версии 1.0.0 и достигла состояния «production ready».

Более подробно обо всём этом читайте на Хабре: https://habr.com/ru/company/yandex/blog/580950/

@ai_machinelearning_big_data
🤖 MiniHack is a sandbox framework for easily designing rich and diverse environments for Reinforcement Learning

Github: https://github.com/facebookresearch/minihack

Facebook AI: https://ai.facebook.com/blog/minihack-a-new-sandbox-for-open-ended-reinforcement-learning/

Paper: https://arxiv.org/abs/2109.13202

Documentation: https://minihack.readthedocs.io/

@ai_machinelearning_big_data