🔊 Textless NLP: Generating expressive speech from raw audio
Facebook Ai: https://ai.facebook.com/blog/textless-nlp-generating-expressive-speech-from-raw-audio/
Examples: https://speechbot.github.io/pgslm/
Code: https://github.com/pytorch/fairseq/tree/master/examples/textless_nlp/gslm
Paper: https://arxiv.org/abs/2102.01192
@ai_machinelearning_big_data
Facebook Ai: https://ai.facebook.com/blog/textless-nlp-generating-expressive-speech-from-raw-audio/
Examples: https://speechbot.github.io/pgslm/
Code: https://github.com/pytorch/fairseq/tree/master/examples/textless_nlp/gslm
Paper: https://arxiv.org/abs/2102.01192
@ai_machinelearning_big_data
✅ AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab
Github: https://github.com/alibaba/AliceMind
Paper: https://arxiv.org/abs/2109.05687v1
Dataset: https://paperswithcode.com/dataset/glue
@ArtificialIntelligencedl
Github: https://github.com/alibaba/AliceMind
Paper: https://arxiv.org/abs/2109.05687v1
Dataset: https://paperswithcode.com/dataset/glue
@ArtificialIntelligencedl
🔧 Neural Networks Block Movement Pruning
Code: https://github.com/huggingface/nn_pruning
Paper: https://arxiv.org/abs/2109.04838v1
Documentation: https://github.com/huggingface/nn_pruning/blob/main/docs/HOWTO.md
@ai_machinelearning_big_data
Code: https://github.com/huggingface/nn_pruning
Paper: https://arxiv.org/abs/2109.04838v1
Documentation: https://github.com/huggingface/nn_pruning/blob/main/docs/HOWTO.md
@ai_machinelearning_big_data
GitHub
GitHub - huggingface/nn_pruning: Prune a model while finetuning or training.
Prune a model while finetuning or training. Contribute to huggingface/nn_pruning development by creating an account on GitHub.
👍1
📖 Physics-Based Deep Learning
Book: https://www.physicsbaseddeeplearning.org/intro.html
Github: https://github.com/thunil/Physics-Based-Deep-Learning
Deep-Flow-Prediction: https://github.com/thunil/Deep-Flow-Prediction
Paper: https://arxiv.org/abs/2109.05237v1
@ai_machinelearning_big_data
Book: https://www.physicsbaseddeeplearning.org/intro.html
Github: https://github.com/thunil/Physics-Based-Deep-Learning
Deep-Flow-Prediction: https://github.com/thunil/Deep-Flow-Prediction
Paper: https://arxiv.org/abs/2109.05237v1
@ai_machinelearning_big_data
❤1
✅ AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab
Github: https://github.com/alibaba/AliceMind
Paper: https://arxiv.org/abs/2109.05687v1
Dataset: https://paperswithcode.com/dataset/glue
Github: https://github.com/alibaba/AliceMind
Paper: https://arxiv.org/abs/2109.05687v1
Dataset: https://paperswithcode.com/dataset/glue
This media is not supported in your browser
VIEW IN TELEGRAM
🗳 Image Shape Manipulation from a Single Augmented Training Sample
Github: https://github.com/eliahuhorwitz/DeepSIM
Paper: https://arxiv.org/abs/2109.06151v1
Dataset: https://paperswithcode.com/dataset/cityscapes
Project: http://www.vision.huji.ac.il/deepsim
@ai_machinelearning_big_data
Github: https://github.com/eliahuhorwitz/DeepSIM
Paper: https://arxiv.org/abs/2109.06151v1
Dataset: https://paperswithcode.com/dataset/cityscapes
Project: http://www.vision.huji.ac.il/deepsim
@ai_machinelearning_big_data
DensePhrases is an extractive phrase search tool based on your natural language inputs
Github: https://github.com/princeton-nlp/DensePhrases
Paper: https://arxiv.org/abs/2109.08133v1
Dataset: https://paperswithcode.com/dataset/squad
@ai_machinelearning_big_data
Github: https://github.com/princeton-nlp/DensePhrases
Paper: https://arxiv.org/abs/2109.08133v1
Dataset: https://paperswithcode.com/dataset/squad
@ai_machinelearning_big_data
☄️ Uncertainty-Aware Machine Translation Evaluation
Code: https://github.com/Unbabel/COMET
Paper: https://arxiv.org/abs/2109.06352v1
Documentation: https://unbabel.github.io/COMET/html/index.html
@ai_machinelearning_big_data
Code: https://github.com/Unbabel/COMET
Paper: https://arxiv.org/abs/2109.06352v1
Documentation: https://unbabel.github.io/COMET/html/index.html
@ai_machinelearning_big_data
🌳 WildWood: a new Random Forest algorithm
Github: https://github.com/pyensemble/wildwood
Paper: https://arxiv.org/abs/2109.08010v1
Documentation: https://wildwood.readthedocs.io/
@ai_machinelearning_big_data
Github: https://github.com/pyensemble/wildwood
Paper: https://arxiv.org/abs/2109.08010v1
Documentation: https://wildwood.readthedocs.io/
@ai_machinelearning_big_data
📄 Revisiting Mask-Head Architectures for Novel Class Instance Segmentation
https://ai.googleblog.com/2021/09/revisiting-mask-head-architectures-for.html
DeepMAC model: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/deepmac.md
Paper: https://arxiv.org/abs/2104.00613
@ai_machinelearning_big_data
https://ai.googleblog.com/2021/09/revisiting-mask-head-architectures-for.html
DeepMAC model: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/deepmac.md
Paper: https://arxiv.org/abs/2104.00613
@ai_machinelearning_big_data
❓ Simple Entity-Centric Questions Challenge Dense Retrievers
Github: https://github.com/princeton-nlp/entityquestions
Paper: https://arxiv.org/abs/2109.08535v1
Dataset: https://paperswithcode.com/dataset/natural-questions
@ai_machinelearning_big_data
Github: https://github.com/princeton-nlp/entityquestions
Paper: https://arxiv.org/abs/2109.08535v1
Dataset: https://paperswithcode.com/dataset/natural-questions
@ai_machinelearning_big_data
📚 The Machine & Deep Learning Compendium Open Book
https://book.mlcompendium.com/
GitBook: https://github.com/orico/www.mlcompendium.com
@ai_machinelearning_big_data
https://book.mlcompendium.com/
GitBook: https://github.com/orico/www.mlcompendium.com
@ai_machinelearning_big_data
Dynamic Slimmable Network (DS-Net)
Github: https://github.com/M3DV/AlignShift
Paper: https://arxiv.org/abs/2109.10060v1
@ArtificialIntelligencedl
Github: https://github.com/M3DV/AlignShift
Paper: https://arxiv.org/abs/2109.10060v1
@ArtificialIntelligencedl
Language Models are Few-shot Multilingual Learners
Github: https://github.com/gentaiscool/few-shot-lm
Paper: https://arxiv.org/abs/2109.07684v1
@ai_machinelearning_big_data
Github: https://github.com/gentaiscool/few-shot-lm
Paper: https://arxiv.org/abs/2109.07684v1
@ai_machinelearning_big_data
🤖 CompilerGym: Robust, Performant Compiler Optimization Environments for AI Research
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks.
Github: https://github.com/facebookresearch/CompilerGym
Documents: https://facebookresearch.github.io/CompilerGym/
Paper: https://arxiv.org/abs/2109.08267v1
@ai_machinelearning_big_data
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks.
Github: https://github.com/facebookresearch/CompilerGym
Documents: https://facebookresearch.github.io/CompilerGym/
Paper: https://arxiv.org/abs/2109.08267v1
@ai_machinelearning_big_data
🚀 Building AI that can generate images of things it has never seen before
Github: https://github.com/facebookresearch/ic_gan
Facebook Ai: https://ai.facebook.com/blog/instance-conditioned-gans/
Documents: https://facebookresearch.github.io/CompilerGym/
Paper: https://arxiv.org/abs/2109.05070
@ai_machinelearning_big_data
Github: https://github.com/facebookresearch/ic_gan
Facebook Ai: https://ai.facebook.com/blog/instance-conditioned-gans/
Documents: https://facebookresearch.github.io/CompilerGym/
Paper: https://arxiv.org/abs/2109.05070
@ai_machinelearning_big_data
📥 Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System
Github: https://github.com/yizhen20133868/ci-tod
Paper: https://arxiv.org/abs/2109.11292v1
Dataset: https://paperswithcode.com/dataset/kvret-1
@ai_machinelearning_big_data
Github: https://github.com/yizhen20133868/ci-tod
Paper: https://arxiv.org/abs/2109.11292v1
Dataset: https://paperswithcode.com/dataset/kvret-1
@ai_machinelearning_big_data
Unseen Object Amodal Instance Segmentation (UOAIS)
Github: https://github.com/gist-ailab/uoais
Paper: https://arxiv.org/abs/2109.11103
Dataset: https://paperswithcode.com/dataset/ocid
Project: https://sites.google.com/view/uoais
@ai_machinelearning_big_data
Github: https://github.com/gist-ailab/uoais
Paper: https://arxiv.org/abs/2109.11103
Dataset: https://paperswithcode.com/dataset/ocid
Project: https://sites.google.com/view/uoais
@ai_machinelearning_big_data
👍1
AlphaRotate: A Rotation Detection Benchmark using TensorFlow
Github: https://github.com/yangxue0827/RotationDetection
Paper: https://arxiv.org/abs/2109.11906v1
Dataset: https://paperswithcode.com/dataset/dota
Documentation: https://rotationdetection.readthedocs.io/en/latest/
@ai_machinelearning_big_data
Github: https://github.com/yangxue0827/RotationDetection
Paper: https://arxiv.org/abs/2109.11906v1
Dataset: https://paperswithcode.com/dataset/dota
Documentation: https://rotationdetection.readthedocs.io/en/latest/
@ai_machinelearning_big_data
🧍♂ PASS: Pictures without humAns for Self-Supervised Pretraining
PASS is a large-scale image dataset that does not include any humans, human parts, or other personally identifiable information.
Github: https://github.com/yukimasano/PASS
Paper: https://arxiv.org/abs/2109.13228v1
Dataset: https://paperswithcode.com/dataset/pass
Documentation: https://www.robots.ox.ac.uk/~vgg/research/pass/
@ai_machinelearning_big_data
PASS is a large-scale image dataset that does not include any humans, human parts, or other personally identifiable information.
Github: https://github.com/yukimasano/PASS
Paper: https://arxiv.org/abs/2109.13228v1
Dataset: https://paperswithcode.com/dataset/pass
Documentation: https://www.robots.ox.ac.uk/~vgg/research/pass/
@ai_machinelearning_big_data
🧠 С момента выкладки библиотеки CatBoost в опенсорс прошло 100 лет! (Это если считать в двоичной системе счисления). Но главная новость в другом: библиотека обновилась до версии 1.0.0 и достигла состояния «production ready».
Более подробно обо всём этом читайте на Хабре: https://habr.com/ru/company/yandex/blog/580950/
@ai_machinelearning_big_data
Более подробно обо всём этом читайте на Хабре: https://habr.com/ru/company/yandex/blog/580950/
@ai_machinelearning_big_data