📹 VRT: A Video Restoration Transformer
Github: https://github.com/jingyunliang/vrt
Paper: https://arxiv.org/abs/2201.12288
Dataset: https://paperswithcode.com/dataset/gopro
@ai_machinelearning_big_data
Github: https://github.com/jingyunliang/vrt
Paper: https://arxiv.org/abs/2201.12288
Dataset: https://paperswithcode.com/dataset/gopro
@ai_machinelearning_big_data
❤1👍1
📍 Competition-Level Code Generation with AlphaCode
Github: https://github.com/deepmind/code_contests
Paper: https://storage.googleapis.com/deepmind-media/AlphaCode/competition_level_code_generation_with_alphacode.pdf
Dataset: https://paperswithcode.com/dataset/humaneval
@ai_machinelearning_big_data
Github: https://github.com/deepmind/code_contests
Paper: https://storage.googleapis.com/deepmind-media/AlphaCode/competition_level_code_generation_with_alphacode.pdf
Dataset: https://paperswithcode.com/dataset/humaneval
@ai_machinelearning_big_data
❤5👍4
VOS: Learning What You Don't Know by Virtual Outlier Synthesis
Github: https://github.com/deeplearning-wisc/vos
Paper: https://arxiv.org/pdf/2202.01197v2.pdf
Dataset: https://paperswithcode.com/dataset/bdd100k
@ai_machinelearning_big_data
Github: https://github.com/deeplearning-wisc/vos
Paper: https://arxiv.org/pdf/2202.01197v2.pdf
Dataset: https://paperswithcode.com/dataset/bdd100k
@ai_machinelearning_big_data
👍7👎1
🦾 The easiest way to the neuroscience world with the shield for RaspberryPi
Github: https://github.com/Ildaron/EEGwithRaspberryPI
Paper: https://arxiv.org/pdf/2202.01936v1.pdf
Project: https://www.crowdsupply.com/hackerbci/pieeg
@ai_machinelearning_big_data
Github: https://github.com/Ildaron/EEGwithRaspberryPI
Paper: https://arxiv.org/pdf/2202.01936v1.pdf
Project: https://www.crowdsupply.com/hackerbci/pieeg
@ai_machinelearning_big_data
❤4👍4
🖌 Two-Dimensional Tensors in Pytorch
https://machinelearningmastery.com/two-dimensional-tensors-in-pytorch/
One-Dimensional Tensors: https://machinelearningmastery.com/one-dimensional-tensors-in-pytorch/
PyTorch tensor Tutorial: https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html
@ai_machinelearning_big_data
https://machinelearningmastery.com/two-dimensional-tensors-in-pytorch/
One-Dimensional Tensors: https://machinelearningmastery.com/one-dimensional-tensors-in-pytorch/
PyTorch tensor Tutorial: https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html
@ai_machinelearning_big_data
❤6👍1
🗒 DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers
Github: https://github.com/j-min/dalleval
Paper: https://arxiv.org/pdf/2202.01936v1.pdf
Data: https://drive.google.com/drive/folders/1Bza2zyvHLvComohZ9PAGyykY7sm7JoIH
Dataset: https://paperswithcode.com/dataset/conceptual-captions
@ai_machinelearning_big_data
Github: https://github.com/j-min/dalleval
Paper: https://arxiv.org/pdf/2202.01936v1.pdf
Data: https://drive.google.com/drive/folders/1Bza2zyvHLvComohZ9PAGyykY7sm7JoIH
Dataset: https://paperswithcode.com/dataset/conceptual-captions
@ai_machinelearning_big_data
👍6❤1
🎬 FILM: Frame Interpolation for Large Scene Motion
Github: https://github.com/google-research/frame-interpolation
Paper: https://arxiv.org/pdf/2202.04901.pdf
Video: https://www.youtube.com/watch?v=OAD-BieIjH4
Project: https://film-net.github.io/
@ai_machinelearning_big_data
Github: https://github.com/google-research/frame-interpolation
Paper: https://arxiv.org/pdf/2202.04901.pdf
Video: https://www.youtube.com/watch?v=OAD-BieIjH4
Project: https://film-net.github.io/
@ai_machinelearning_big_data
❤5👍2
Опубликованы новые материалы по Machine Learning от Школы анализа данных Яндекса 🔥
То самое пособие, которое ШАД разместила в открытом доступе, пополнилось новым разделом — про базовые архитектуры и обучение нейросетей. Чтобы вы лучше разобрались в предыдущих темах, авторы также добавили главы о математике ML: матричное дифференцирование и bias-variance decomposition.
Возьмитесь за основательное изучение Machine Learning и сохраняйте ссылку на онлайн-учебник: https://clck.ru/b33aZ
P.S. Пособие регулярно обновляется, и в скором времени в нём появятся материалы о вероятностном подходе к ML и решении сложных задач Data Science. Следите за выходом новых глав!
То самое пособие, которое ШАД разместила в открытом доступе, пополнилось новым разделом — про базовые архитектуры и обучение нейросетей. Чтобы вы лучше разобрались в предыдущих темах, авторы также добавили главы о математике ML: матричное дифференцирование и bias-variance decomposition.
Возьмитесь за основательное изучение Machine Learning и сохраняйте ссылку на онлайн-учебник: https://clck.ru/b33aZ
P.S. Пособие регулярно обновляется, и в скором времени в нём появятся материалы о вероятностном подходе к ML и решении сложных задач Data Science. Следите за выходом новых глав!
👍12🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
💡 A lightweight vision library for performing large scale object detection & instance segmentation
Github: https://github.com/obss/sahi
Paper: https://arxiv.org/abs/2202.06934v1
Kaggle notebook: https://www.kaggle.com/remekkinas/sahi-slicing-aided-hyper-inference-yv5-and-yx
Dataset: https://paperswithcode.com/dataset/xview
@ai_machinelearning_big_data
Github: https://github.com/obss/sahi
Paper: https://arxiv.org/abs/2202.06934v1
Kaggle notebook: https://www.kaggle.com/remekkinas/sahi-slicing-aided-hyper-inference-yv5-and-yx
Dataset: https://paperswithcode.com/dataset/xview
@ai_machinelearning_big_data
❤12🔥4👍2
🐙 OCTIS : Optimizing and Comparing Topic Models is Simple!
Github: https://github.com/mind-Lab/octis
Paper: https://arxiv.org/abs/2202.07631v1
Dataset: https://paperswithcode.com/dataset/20-newsgroups
@ai_machinelearning_big_data
Github: https://github.com/mind-Lab/octis
Paper: https://arxiv.org/abs/2202.07631v1
Dataset: https://paperswithcode.com/dataset/20-newsgroups
@ai_machinelearning_big_data
GitHub
GitHub - MIND-Lab/OCTIS: OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted…
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track) - MIND-Lab/OCTIS
👍12
🗣 Facebbok’s textless-lib: a Library for Textless Spoken Language Processing
Github: https://github.com/facebookresearch/textlesslib
Code examples: https://github.com/facebookresearch/textlesslib/tree/main/examples
Paper: https://arxiv.org/abs/2202.07359v1
Dataset: https://paperswithcode.com/dataset/librispeech
@ai_machinelearning_big_data
Github: https://github.com/facebookresearch/textlesslib
Code examples: https://github.com/facebookresearch/textlesslib/tree/main/examples
Paper: https://arxiv.org/abs/2202.07359v1
Dataset: https://paperswithcode.com/dataset/librispeech
@ai_machinelearning_big_data
❤5👍4
🔎 Anomalib: A Deep Learning Library for Anomaly Detection
Github: https://github.com/openvinotoolkit/anomalib
Docs: https://openvinotoolkit.github.io/anomalib/
Paper: https://arxiv.org/abs/2202.08341v1
Dataset: https://paperswithcode.com/dataset/btad
@ai_machinelearning_big_data
Github: https://github.com/openvinotoolkit/anomalib
Docs: https://openvinotoolkit.github.io/anomalib/
Paper: https://arxiv.org/abs/2202.08341v1
Dataset: https://paperswithcode.com/dataset/btad
@ai_machinelearning_big_data
🔥11👍5
This media is not supported in your browser
VIEW IN TELEGRAM
💻 Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Github: https://github.com/nvlabs/instant-ngp
HashNeRF-pytorch: https://openvinotoolkit.github.io/anomalib/
Paper: https://arxiv.org/abs/2201.05989v1
@ai_machinelearning_big_data
Github: https://github.com/nvlabs/instant-ngp
HashNeRF-pytorch: https://openvinotoolkit.github.io/anomalib/
Paper: https://arxiv.org/abs/2201.05989v1
@ai_machinelearning_big_data
👍16
Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation
Github: https://github.com/tzer-anonbot/tzer
Docs: https://tzer.readthedocs.io/en/latest/markdown/artifact.html
Paper: https://arxiv.org/abs/2202.09947v1
@ai_machinelearning_big_data
Github: https://github.com/tzer-anonbot/tzer
Docs: https://tzer.readthedocs.io/en/latest/markdown/artifact.html
Paper: https://arxiv.org/abs/2202.09947v1
@ai_machinelearning_big_data
👍6❤2
🔥 The Complete Collection of Data Science Cheat Sheets
https://www.kdnuggets.com/2022/02/complete-collection-data-science-cheat-sheets-part-2.html
@ai_machinelearning_big_data
https://www.kdnuggets.com/2022/02/complete-collection-data-science-cheat-sheets-part-2.html
@ai_machinelearning_big_data
KDnuggets
The Complete Collection of Data Science Cheat Sheets - Part 2 - KDnuggets
A collection of cheat sheets that will help you prepare for a technical interview on Data Structures & Algorithms, Machine learning, Deep Learning, Natural Language Processing, Data Engineering, Web Frameworks.
👍9🔥5❤4
☑️ One-shot Affordance Detection
Github: https://github.com/lhc1224/OSAD_Net
Paper: https://arxiv.org/abs/2202.12076v1
Dataset: https://paperswithcode.com/dataset/pad
@ai_machinelearning_big_data
Github: https://github.com/lhc1224/OSAD_Net
Paper: https://arxiv.org/abs/2202.12076v1
Dataset: https://paperswithcode.com/dataset/pad
@ai_machinelearning_big_data
👍4❤1
👁 Visual Attention Network (VAN)
Github: https://github.com/Visual-Attention-Network/VAN-Classification
Paper: https://arxiv.org/pdf/2202.09741.pdf
Dataset: https://paperswithcode.com/dataset/ade20k
@ai_machinelearning_big_data
Github: https://github.com/Visual-Attention-Network/VAN-Classification
Paper: https://arxiv.org/pdf/2202.09741.pdf
Dataset: https://paperswithcode.com/dataset/ade20k
@ai_machinelearning_big_data
👍10
📱 Best it channels in telegram
https://news.1rj.ru/str/ArtificialIntelligencedl - ai
https://news.1rj.ru/str/pythonl - largest python
https://news.1rj.ru/str/Machinelearningtest - machine learning test
https://news.1rj.ru/str/pro_python_code - python ru
https://news.1rj.ru/str/datascienceiot - ds, ml free books
https://news.1rj.ru/str/programming_books_it
https://news.1rj.ru/str/pythonlbooks - python books
https://news.1rj.ru/str/javanoscriptv - javanoscript channel
https://news.1rj.ru/str/about_javanoscript - advanced js
https://news.1rj.ru/str/JavaScript_testit - js tests
https://news.1rj.ru/str/Golang_google - Go channel
https://news.1rj.ru/str/golangl. -golang chat
https://news.1rj.ru/str/golang_jobsgo -golang jobs
https://news.1rj.ru/str/neural - neural nets
https://news.1rj.ru/str/hashdev - web development
https://news.1rj.ru/str/htmlcssjavas - web
https://news.1rj.ru/str/hr_itwork - jobs
https://news.1rj.ru/str/linux_kal - kali linux
https://news.1rj.ru/str/machinee_learning - ml chat
https://news.1rj.ru/str/linuxkalii - linux chat
https://news.1rj.ru/str/machinelearning_ru - ml ru
https://news.1rj.ru/str/python_testit - python tests
https://news.1rj.ru/str/csharp_ci- c#
https://news.1rj.ru/str/tensorflowblog - tensorflow
https://news.1rj.ru/str/Django_pythonl
https://news.1rj.ru/str/ArtificialIntelligencedl - ai
https://news.1rj.ru/str/pythonl - largest python
https://news.1rj.ru/str/Machinelearningtest - machine learning test
https://news.1rj.ru/str/pro_python_code - python ru
https://news.1rj.ru/str/datascienceiot - ds, ml free books
https://news.1rj.ru/str/programming_books_it
https://news.1rj.ru/str/pythonlbooks - python books
https://news.1rj.ru/str/javanoscriptv - javanoscript channel
https://news.1rj.ru/str/about_javanoscript - advanced js
https://news.1rj.ru/str/JavaScript_testit - js tests
https://news.1rj.ru/str/Golang_google - Go channel
https://news.1rj.ru/str/golangl. -golang chat
https://news.1rj.ru/str/golang_jobsgo -golang jobs
https://news.1rj.ru/str/neural - neural nets
https://news.1rj.ru/str/hashdev - web development
https://news.1rj.ru/str/htmlcssjavas - web
https://news.1rj.ru/str/hr_itwork - jobs
https://news.1rj.ru/str/linux_kal - kali linux
https://news.1rj.ru/str/machinee_learning - ml chat
https://news.1rj.ru/str/linuxkalii - linux chat
https://news.1rj.ru/str/machinelearning_ru - ml ru
https://news.1rj.ru/str/python_testit - python tests
https://news.1rj.ru/str/csharp_ci- c#
https://news.1rj.ru/str/tensorflowblog - tensorflow
https://news.1rj.ru/str/Django_pythonl
🔥9👍3
💥 Local and Global GANs with Semantic-Aware Upsampling for Image Generation
Github: https://github.com/Ha0Tang/LGGAN
Paper: https://arxiv.org/abs/2203.00047v1
Dataset: https://paperswithcode.com/dataset/cityscapes
@ai_machinelearning_big_data
Github: https://github.com/Ha0Tang/LGGAN
Paper: https://arxiv.org/abs/2203.00047v1
Dataset: https://paperswithcode.com/dataset/cityscapes
@ai_machinelearning_big_data
❤5👍3
🎲 Bayesian IRT models in Python
Github: https://github.com/nd-ball/py-irt
Paper: https://arxiv.org/abs/2203.01282v1
Bayesian IRT: https://m-clark.github.io/models-by-example/bayesian-irt.html
@ai_machinelearning_big_data
Github: https://github.com/nd-ball/py-irt
Paper: https://arxiv.org/abs/2203.01282v1
Bayesian IRT: https://m-clark.github.io/models-by-example/bayesian-irt.html
@ai_machinelearning_big_data
👍8🔥2