VOS: Learning What You Don't Know by Virtual Outlier Synthesis
Github: https://github.com/deeplearning-wisc/vos
Paper: https://arxiv.org/pdf/2202.01197v2.pdf
Dataset: https://paperswithcode.com/dataset/bdd100k
@ai_machinelearning_big_data
Github: https://github.com/deeplearning-wisc/vos
Paper: https://arxiv.org/pdf/2202.01197v2.pdf
Dataset: https://paperswithcode.com/dataset/bdd100k
@ai_machinelearning_big_data
👍7👎1
🦾 The easiest way to the neuroscience world with the shield for RaspberryPi
Github: https://github.com/Ildaron/EEGwithRaspberryPI
Paper: https://arxiv.org/pdf/2202.01936v1.pdf
Project: https://www.crowdsupply.com/hackerbci/pieeg
@ai_machinelearning_big_data
Github: https://github.com/Ildaron/EEGwithRaspberryPI
Paper: https://arxiv.org/pdf/2202.01936v1.pdf
Project: https://www.crowdsupply.com/hackerbci/pieeg
@ai_machinelearning_big_data
❤4👍4
🖌 Two-Dimensional Tensors in Pytorch
https://machinelearningmastery.com/two-dimensional-tensors-in-pytorch/
One-Dimensional Tensors: https://machinelearningmastery.com/one-dimensional-tensors-in-pytorch/
PyTorch tensor Tutorial: https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html
@ai_machinelearning_big_data
https://machinelearningmastery.com/two-dimensional-tensors-in-pytorch/
One-Dimensional Tensors: https://machinelearningmastery.com/one-dimensional-tensors-in-pytorch/
PyTorch tensor Tutorial: https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html
@ai_machinelearning_big_data
❤6👍1
🗒 DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers
Github: https://github.com/j-min/dalleval
Paper: https://arxiv.org/pdf/2202.01936v1.pdf
Data: https://drive.google.com/drive/folders/1Bza2zyvHLvComohZ9PAGyykY7sm7JoIH
Dataset: https://paperswithcode.com/dataset/conceptual-captions
@ai_machinelearning_big_data
Github: https://github.com/j-min/dalleval
Paper: https://arxiv.org/pdf/2202.01936v1.pdf
Data: https://drive.google.com/drive/folders/1Bza2zyvHLvComohZ9PAGyykY7sm7JoIH
Dataset: https://paperswithcode.com/dataset/conceptual-captions
@ai_machinelearning_big_data
👍6❤1
🎬 FILM: Frame Interpolation for Large Scene Motion
Github: https://github.com/google-research/frame-interpolation
Paper: https://arxiv.org/pdf/2202.04901.pdf
Video: https://www.youtube.com/watch?v=OAD-BieIjH4
Project: https://film-net.github.io/
@ai_machinelearning_big_data
Github: https://github.com/google-research/frame-interpolation
Paper: https://arxiv.org/pdf/2202.04901.pdf
Video: https://www.youtube.com/watch?v=OAD-BieIjH4
Project: https://film-net.github.io/
@ai_machinelearning_big_data
❤5👍2
Опубликованы новые материалы по Machine Learning от Школы анализа данных Яндекса 🔥
То самое пособие, которое ШАД разместила в открытом доступе, пополнилось новым разделом — про базовые архитектуры и обучение нейросетей. Чтобы вы лучше разобрались в предыдущих темах, авторы также добавили главы о математике ML: матричное дифференцирование и bias-variance decomposition.
Возьмитесь за основательное изучение Machine Learning и сохраняйте ссылку на онлайн-учебник: https://clck.ru/b33aZ
P.S. Пособие регулярно обновляется, и в скором времени в нём появятся материалы о вероятностном подходе к ML и решении сложных задач Data Science. Следите за выходом новых глав!
То самое пособие, которое ШАД разместила в открытом доступе, пополнилось новым разделом — про базовые архитектуры и обучение нейросетей. Чтобы вы лучше разобрались в предыдущих темах, авторы также добавили главы о математике ML: матричное дифференцирование и bias-variance decomposition.
Возьмитесь за основательное изучение Machine Learning и сохраняйте ссылку на онлайн-учебник: https://clck.ru/b33aZ
P.S. Пособие регулярно обновляется, и в скором времени в нём появятся материалы о вероятностном подходе к ML и решении сложных задач Data Science. Следите за выходом новых глав!
👍12🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
💡 A lightweight vision library for performing large scale object detection & instance segmentation
Github: https://github.com/obss/sahi
Paper: https://arxiv.org/abs/2202.06934v1
Kaggle notebook: https://www.kaggle.com/remekkinas/sahi-slicing-aided-hyper-inference-yv5-and-yx
Dataset: https://paperswithcode.com/dataset/xview
@ai_machinelearning_big_data
Github: https://github.com/obss/sahi
Paper: https://arxiv.org/abs/2202.06934v1
Kaggle notebook: https://www.kaggle.com/remekkinas/sahi-slicing-aided-hyper-inference-yv5-and-yx
Dataset: https://paperswithcode.com/dataset/xview
@ai_machinelearning_big_data
❤12🔥4👍2
🐙 OCTIS : Optimizing and Comparing Topic Models is Simple!
Github: https://github.com/mind-Lab/octis
Paper: https://arxiv.org/abs/2202.07631v1
Dataset: https://paperswithcode.com/dataset/20-newsgroups
@ai_machinelearning_big_data
Github: https://github.com/mind-Lab/octis
Paper: https://arxiv.org/abs/2202.07631v1
Dataset: https://paperswithcode.com/dataset/20-newsgroups
@ai_machinelearning_big_data
GitHub
GitHub - MIND-Lab/OCTIS: OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted…
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track) - MIND-Lab/OCTIS
👍12
🗣 Facebbok’s textless-lib: a Library for Textless Spoken Language Processing
Github: https://github.com/facebookresearch/textlesslib
Code examples: https://github.com/facebookresearch/textlesslib/tree/main/examples
Paper: https://arxiv.org/abs/2202.07359v1
Dataset: https://paperswithcode.com/dataset/librispeech
@ai_machinelearning_big_data
Github: https://github.com/facebookresearch/textlesslib
Code examples: https://github.com/facebookresearch/textlesslib/tree/main/examples
Paper: https://arxiv.org/abs/2202.07359v1
Dataset: https://paperswithcode.com/dataset/librispeech
@ai_machinelearning_big_data
❤5👍4
🔎 Anomalib: A Deep Learning Library for Anomaly Detection
Github: https://github.com/openvinotoolkit/anomalib
Docs: https://openvinotoolkit.github.io/anomalib/
Paper: https://arxiv.org/abs/2202.08341v1
Dataset: https://paperswithcode.com/dataset/btad
@ai_machinelearning_big_data
Github: https://github.com/openvinotoolkit/anomalib
Docs: https://openvinotoolkit.github.io/anomalib/
Paper: https://arxiv.org/abs/2202.08341v1
Dataset: https://paperswithcode.com/dataset/btad
@ai_machinelearning_big_data
🔥11👍5
This media is not supported in your browser
VIEW IN TELEGRAM
💻 Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Github: https://github.com/nvlabs/instant-ngp
HashNeRF-pytorch: https://openvinotoolkit.github.io/anomalib/
Paper: https://arxiv.org/abs/2201.05989v1
@ai_machinelearning_big_data
Github: https://github.com/nvlabs/instant-ngp
HashNeRF-pytorch: https://openvinotoolkit.github.io/anomalib/
Paper: https://arxiv.org/abs/2201.05989v1
@ai_machinelearning_big_data
👍16
Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation
Github: https://github.com/tzer-anonbot/tzer
Docs: https://tzer.readthedocs.io/en/latest/markdown/artifact.html
Paper: https://arxiv.org/abs/2202.09947v1
@ai_machinelearning_big_data
Github: https://github.com/tzer-anonbot/tzer
Docs: https://tzer.readthedocs.io/en/latest/markdown/artifact.html
Paper: https://arxiv.org/abs/2202.09947v1
@ai_machinelearning_big_data
👍6❤2
🔥 The Complete Collection of Data Science Cheat Sheets
https://www.kdnuggets.com/2022/02/complete-collection-data-science-cheat-sheets-part-2.html
@ai_machinelearning_big_data
https://www.kdnuggets.com/2022/02/complete-collection-data-science-cheat-sheets-part-2.html
@ai_machinelearning_big_data
KDnuggets
The Complete Collection of Data Science Cheat Sheets - Part 2 - KDnuggets
A collection of cheat sheets that will help you prepare for a technical interview on Data Structures & Algorithms, Machine learning, Deep Learning, Natural Language Processing, Data Engineering, Web Frameworks.
👍9🔥5❤4
☑️ One-shot Affordance Detection
Github: https://github.com/lhc1224/OSAD_Net
Paper: https://arxiv.org/abs/2202.12076v1
Dataset: https://paperswithcode.com/dataset/pad
@ai_machinelearning_big_data
Github: https://github.com/lhc1224/OSAD_Net
Paper: https://arxiv.org/abs/2202.12076v1
Dataset: https://paperswithcode.com/dataset/pad
@ai_machinelearning_big_data
👍4❤1
👁 Visual Attention Network (VAN)
Github: https://github.com/Visual-Attention-Network/VAN-Classification
Paper: https://arxiv.org/pdf/2202.09741.pdf
Dataset: https://paperswithcode.com/dataset/ade20k
@ai_machinelearning_big_data
Github: https://github.com/Visual-Attention-Network/VAN-Classification
Paper: https://arxiv.org/pdf/2202.09741.pdf
Dataset: https://paperswithcode.com/dataset/ade20k
@ai_machinelearning_big_data
👍10
📱 Best it channels in telegram
https://news.1rj.ru/str/ArtificialIntelligencedl - ai
https://news.1rj.ru/str/pythonl - largest python
https://news.1rj.ru/str/Machinelearningtest - machine learning test
https://news.1rj.ru/str/pro_python_code - python ru
https://news.1rj.ru/str/datascienceiot - ds, ml free books
https://news.1rj.ru/str/programming_books_it
https://news.1rj.ru/str/pythonlbooks - python books
https://news.1rj.ru/str/javanoscriptv - javanoscript channel
https://news.1rj.ru/str/about_javanoscript - advanced js
https://news.1rj.ru/str/JavaScript_testit - js tests
https://news.1rj.ru/str/Golang_google - Go channel
https://news.1rj.ru/str/golangl. -golang chat
https://news.1rj.ru/str/golang_jobsgo -golang jobs
https://news.1rj.ru/str/neural - neural nets
https://news.1rj.ru/str/hashdev - web development
https://news.1rj.ru/str/htmlcssjavas - web
https://news.1rj.ru/str/hr_itwork - jobs
https://news.1rj.ru/str/linux_kal - kali linux
https://news.1rj.ru/str/machinee_learning - ml chat
https://news.1rj.ru/str/linuxkalii - linux chat
https://news.1rj.ru/str/machinelearning_ru - ml ru
https://news.1rj.ru/str/python_testit - python tests
https://news.1rj.ru/str/csharp_ci- c#
https://news.1rj.ru/str/tensorflowblog - tensorflow
https://news.1rj.ru/str/Django_pythonl
https://news.1rj.ru/str/ArtificialIntelligencedl - ai
https://news.1rj.ru/str/pythonl - largest python
https://news.1rj.ru/str/Machinelearningtest - machine learning test
https://news.1rj.ru/str/pro_python_code - python ru
https://news.1rj.ru/str/datascienceiot - ds, ml free books
https://news.1rj.ru/str/programming_books_it
https://news.1rj.ru/str/pythonlbooks - python books
https://news.1rj.ru/str/javanoscriptv - javanoscript channel
https://news.1rj.ru/str/about_javanoscript - advanced js
https://news.1rj.ru/str/JavaScript_testit - js tests
https://news.1rj.ru/str/Golang_google - Go channel
https://news.1rj.ru/str/golangl. -golang chat
https://news.1rj.ru/str/golang_jobsgo -golang jobs
https://news.1rj.ru/str/neural - neural nets
https://news.1rj.ru/str/hashdev - web development
https://news.1rj.ru/str/htmlcssjavas - web
https://news.1rj.ru/str/hr_itwork - jobs
https://news.1rj.ru/str/linux_kal - kali linux
https://news.1rj.ru/str/machinee_learning - ml chat
https://news.1rj.ru/str/linuxkalii - linux chat
https://news.1rj.ru/str/machinelearning_ru - ml ru
https://news.1rj.ru/str/python_testit - python tests
https://news.1rj.ru/str/csharp_ci- c#
https://news.1rj.ru/str/tensorflowblog - tensorflow
https://news.1rj.ru/str/Django_pythonl
🔥9👍3
💥 Local and Global GANs with Semantic-Aware Upsampling for Image Generation
Github: https://github.com/Ha0Tang/LGGAN
Paper: https://arxiv.org/abs/2203.00047v1
Dataset: https://paperswithcode.com/dataset/cityscapes
@ai_machinelearning_big_data
Github: https://github.com/Ha0Tang/LGGAN
Paper: https://arxiv.org/abs/2203.00047v1
Dataset: https://paperswithcode.com/dataset/cityscapes
@ai_machinelearning_big_data
❤5👍3
🎲 Bayesian IRT models in Python
Github: https://github.com/nd-ball/py-irt
Paper: https://arxiv.org/abs/2203.01282v1
Bayesian IRT: https://m-clark.github.io/models-by-example/bayesian-irt.html
@ai_machinelearning_big_data
Github: https://github.com/nd-ball/py-irt
Paper: https://arxiv.org/abs/2203.01282v1
Bayesian IRT: https://m-clark.github.io/models-by-example/bayesian-irt.html
@ai_machinelearning_big_data
👍8🔥2
Hello everyone. My name is Andrew and for several years I've been working on to make the learning path for ML
easier.
I wrote a manual on machine learning that
everyone understands - Machine Learning Simplified Book. The main purpose of my book is to build an intuitive
understanding of how algorithms work through basic examples. In order to understand the presented material,
it is enough to know basic mathematics and linear algebra.
After reading this book, you will know the basics of supervised learning, understand complex mathematical models, understand the entire pipeline of a typical ML project, and also be able to share your knowledge with colleagues from related industries and with technical
professionals.
You can read the book absolutely free at the link below:
-> https://themlsbook.com
easier.
I wrote a manual on machine learning that
everyone understands - Machine Learning Simplified Book. The main purpose of my book is to build an intuitive
understanding of how algorithms work through basic examples. In order to understand the presented material,
it is enough to know basic mathematics and linear algebra.
After reading this book, you will know the basics of supervised learning, understand complex mathematical models, understand the entire pipeline of a typical ML project, and also be able to share your knowledge with colleagues from related industries and with technical
professionals.
You can read the book absolutely free at the link below:
-> https://themlsbook.com
👍35❤7🔥6👎1
This media is not supported in your browser
VIEW IN TELEGRAM
⚫️ Beyond 3D Siamese Tracking: A Motion-Centric Paradigm for 3D Single Object Tracking in Point Clouds
Github: https://github.com/ghostish/open3dsot
Paper: https://arxiv.org/abs/2203.01730v1
Dataset: https://paperswithcode.com/dataset/kitti
@ai_machinelearning_big_data
Github: https://github.com/ghostish/open3dsot
Paper: https://arxiv.org/abs/2203.01730v1
Dataset: https://paperswithcode.com/dataset/kitti
@ai_machinelearning_big_data
❤10🔥3👍1